BAB I PENDAHULUAN

1.1. Latar Belakang

Pemeriksaan laboratorium merupakan pemeriksaan yang dilakukan untuk kepentingan klinik. Tujuan pemeriksaan laboratorium klinik adalah untuk membantu menegakkan diagnosa penyakit pada penderita (Gandasoebrata, 2007).

Darah merupakan jaringan tubuh yang berbeda dengan jaringan tubuh lain, beredar dalam suatu sistem tertutup yang dinamakan sebagai pembuluh darah dan berfungsi sebagai sarana transpor, alat homeostatis dan alat pertahanan. Darah dibagi menjadi dua bagaian yaitu sel darah dan cairan darah. Sel darah terdiri dari sel darah merah (eritrosit), sel darah putih (lekosit) dan keping sel (trombosit). Cairan darah yang terpisah dari sel darah yaitu plasma atau serum (Sadikin, 2013).

Trombosit merupakan suatu partikel kecil yang berdiameter 2-4 mikrometer, dimana terdapat sirkulasi plasma darah. Trombosit dibentuk oleh fregmentasi sumsung tulang yaitu megakariosit (Muttaqin A. 2009). Trombosit mempunyai peranan penting untuk hemostasis dan koagulasi, memiliki siklus hidup 10 hari. Jumlah darah pada keadaan normal 150.000 – 400.000/mm³ (Prece dab Wilson, 2013).

Pemeriksaan hitung jumlah trombosit yang biasa di pakai ada 2 metode diantaranya metode langsung dan metode tidak langsung. Metode tidak langsung menggunakan 2 cara yaitu dengan pipet thoma dan cara tabung. Metode langsung cara tabung mempunyai prinsip pemeriksaan yang sama dengan pipet thoma, yang berbeda adalah pengencer yang dilakukan didalam tabung dan perbandingan

antara darah dan pengenceran menggunakan mikropipet. Sel-sel darah yang telah diencerkan dihitung di dalam kamar hitung pada volume tertentu (Gandasoebrata, 2010).

Dalam pemeriksaan laboratorium dapat digunakan berbagai macam antikoagulan, tergantung dari jenis pemeriksaan yang akan dilakukan karena setiap antikoagulan memiliki kelebihan masing-masing. Beberapa macam antikoagulan antara lain : Triosidium Sitrat, Double Oxalate, Heparin, EDTA (Ethylendiamine Tetraacetic Acid) dan Natrium Oxalate. EDTA sering digunakan untuk pemeriksaan hematologi, seperti penetapan kadar hemaglobin, hitung jumlah lekosit, eritrosit, trombosit, retikulosit, hematokrit dan penetapan laju endap darah karena EDTA tidak mempengaruhi bentuk eritrosit dan leukosit sehingga EDTA adalah antikoagulan sangat baik untuk hitung jumlah trombosit. EDTA yang sering digunakan dalam bentuk larutan 10% yang dapat diartikan sebagai 10 g EDTA serbuk dilarutkan kedalam 100 ml aquades. Tiap 1000 μl EDTA menghindarnya membekunya 1 ml darah sedangkan menggunakan larutan EDTA tiap 10 μl dapat menghindari membekunya 1 ml darah (Gandasoebrata, 2008). salah satu jenis tanaman yang bisa dijadikan sebagai antikoagulan alternatif adalah Magrove.

Menurut peneliti sebelumnya yang dilakukan oleh Tangkery, dkk. Tahun 2013 tentang "Uji Aktivitas Antikoagulan Ekstrak Mangrove (*Aegiceras corniculatum*)". Penelitian digunakan batang dari tumbuhan bakau *Aegiceras corniculatum* untuk diamati laboratorik apakah *Aegiceras corniculatum* memiliki aktifitas antikoagulasi. Hasil pengujian ekstrak batang mangrove tidak memiliki

aktivitas koagulasi, melainkan memiliki sifat antikoagulan atau anti pembekuan darah. Mangrove memiliki senyawa flavanoid dan turunan flavanol lainnya diperoleh pada bagian batang yang dapat memberikan efek anti pembekuan darah mengikat kalsium atau dengan menghambat pembentukan trombin yang diperlukan untuk mengkonversi fibrinogen menjadi fibrin dalam proses pembekuan. Proses transfer Ca2+ ke dalam sitoplasma sel platelet dihambat oleh senyawa flavanoid dan turunan flavanol lainnya yang terkandung, sehingga tidak terjadi agregrasi platelet. Batang mangrove akan dimanfaatkan sebagai antikoagulan alternatif untuk pemeriksaan hematologi khususnya dalam menghitung jumlah Trombosit serta menambah referensi antikoagulan yang hemat biaya.

Berdasarkan penelitian Citra Fajarwati 2017 "Perbandingan hasil pemeriksaan jumlah leukosit menggunakan antikoagulan EDTA dan antikoagulan ekstrak batang mangrove (*Aegiceras corniculatum*)". Hasil dari penelitian Ada perbedaan jumlah leukosit menggunakan antikoagulan EDTA dan antikoagulan ekstrak batang mangrove. Pemeriksaan hematologi tidak semua antikoagulan dapat digunakan karena ada yang dapat berpengaruh terhadap morfologi sel darah seperti terjadinya krenasi atau pengerutan eritrosit (Gandasoebrata, 2008).

1.2. Rumusan Masalah

Berdasarkan latar belakang tersebut dapat dirumuskan masalah " Adakah perbedaan hasil jumlah trombosit menggunakan antikoagulan EDTA dan antikoagulan ekstrak batang mangrove (*Aegiceras corniculatum*).

1.3. Tujuan Penelitian

1.3.1. Tujuan Umum

Mengetahui perbedaan hasil jumlah trombosit menggunakan antikoagulan EDTA dan antikoagulan ekstrak batang mangrove (*Aegiceras corniculatum*).

1.3.2. Tujuan Khusus

- 1.3.2.1. Menghitung jumlah trombosit dengan menggunakan antikoagulan EDTA metode manual.
- 1.3.2.2. Menghitung jumlah trombosit dengan antikoagulan alternatif ekstrak batang mangrove (*Aegiceras corniculatum*) metode manual.
- 1.3.2.3. Menganalisa berbedaan hasil jumlah trombosit dengan antikoagulan EDTA dan ekstrak batang mangrove (*Aegiceras corniculatum*) dengan metode manual.

1.4. Manfaat Penelitian

1.4.1. **Bagi peneliti**

Mengembangkan ilmu pengetahuan yang diperoleh dalam teori perkuliahan tentang pemeriksaan hematologi khususnya trombosit di Universitas Muhammadiyah semarang jurusan D4 Analis Kesehatan.

1.4.2. Bagi Instansi Pendidikan

Menambah pustaka untuk pengkajian dan pengembangan ilmu baru tentang Hematologi.

1.4.3. Bagi Klinisi

Menambah referensi antikoagulan alternatif dan lebih hemat biaya.

1.5. Keasliaan Penelitian

Penelitian tentang Perbedaan jumlah hasil trombosit dengan antikoagulan EDTA dan ekstrak batang mangrove (*Aegiceras corniculatum*), baru akan dilakukan.

Penelitian terdahulu yang berkaitan dengan penelitian ini dapat dilihat pada tabel di bawah ini.

Tabel 1.1 Penelitian yang berkaitan dengan penelitian ini adalah :

No	Peneliti	Judul	Jenis penelitian	Variabel	Hasil penelitian
110	tahun	penelitian	Jems penentian	penelitian	masii penenuan
			D 11.1		
1	Citra	Perbedaan	Penelitian	Variabel bebas	
	Fajarwati	jumlah hasil	deskriptif analitik	: antikogulan	Terdapat perbedaan
	2017	pemeriksaan	dengan rancangan	EDTA dan	yang bermakna
		leukosit	cross sectional	antikoagulan	terhadap jumlah
		menggunakan		ekstrak batang	leukosit dengan
		antikoagulan	- A2	mangrove.	antikoagulan EDTA
		EDTA dan		Variabel	dan antikoagulan
		ekstrak batang		terikat:	ekstrak batang
		mangrove		jumlah	mangrove (Aegiceras
		(Aegiceras		trombosit	corniculatum).
		corniculatum)			
2	Uswatun	Perbedaan	Penelitian	Variabel bebas	Terdapat perbedaan
	khasana	hasil	deskriptif analitik	: darah vena	yang bermakna antara
	2016	pemeriksaan	dengan rancangan	dan darah	jumlah trombosit
		hitung jumlah	cross sectional	kapiler.	dengan sampel darah
		trombosit pada		Variabel	vena dan jumlah
		darah vena		terikat :	trombosit dengan
		dan darah		jumlah	sampel darah kapiler
		kapiler dengan		trombosit.	-
		metode tabung			
3	Konradus	Perbedaan	Penelitin cross	Variabel bebas	Tidak terdapat
	Joko	jumlah	sectional dengan	: Metode	perbedaan yang
	2016	trombosit	membandingkan	autometic	bermakna antara hasil
		menggunakan	setelah	analyzer, pipet	jumlah trombosit
		metode	mengobservasi	Thoma dan	menggunakan <i>metode</i>
		autometic	dan menganalisis	Barbara	autometic, pipet
		analyzer, pipet	hasil ketiga	Brown.	Thoma dan Barbara
		Thoma dan	metode	Variabel	brown.
		Barbara	1110000	terikat :	0101114
		brown.		Jumlah	
		orown.		trombosit	
				uomoosit	

Adapun perbedaan dengan penelitian terlebih dahulu adalah pada penelitian sebelumnya menghitung jumlah leukosit menggunakan antikoagulan ekstrak batang mangrove, perbedaan jumlah trombosit pada darah vena dan kapiler, perbedaan jumlah trombosit dengan 3 metode secara bersamaan, sedangkan penelitian yang akan dilakukan adalah perbedaan jumlah trombosit menggunakan antikoagulan EDTA dan ekstrak batang mangrove secara manual.

