Prediction of passenger train using fuzzy time series and percentage change methods

Solikhin¹, Septia Lutfi², Purnomo³, Hardiwinoto⁴

^{1,2}Department of Informatics Engineering, STMIK Himsya, Semarang, Indonesia
³Department of Mechanical Engineering, Faculty of Engineering, University of Muhammadiyah Semarang, Indonesia
⁴Department of Accounting, Faculty of Economics, University of Muhammadiyah Semarang, Indonesia

Article Info

Article history:

Received Jan 21, 2021 Revised Aug 19, 2021 Accepted Oct 15, 2021

Keywords:

Double exponential smoothing Forecasting Fuzzy time series Passenger train Percentage change

ABSTRACT

In the subject of railway operation, predicting railway passenger volume has always been a hot topic. Accurately forecasting railway passenger volume is the foundation for railway transportation companies to optimize transit efficiency and revenue. The goal of this research is to use a combination of the fuzzy time series approach based on the rate of change algorithm and the Holt double exponential smoothing method to forecast the number of train passengers. In contrast to prior investigations, we focus primarily on determining the next time period in this research. The fuzzy time series is employed as the forecasting basis, the rate of change is used to build the set of universes, and the Holt's double exponential smoothing method is utilized to forecast the following period in this case study. The number of railway passengers predicted for January 2020 is 38199, with a tiny average forecasting error rate of 0.89 percent and a mean square error of 131325. It can also help rail firms identify future passenger needs, which can be used to decide whether to expand train cars or run new trains, as well as how to distribute tickets.

This is an open access article under the <u>CC BY-SA</u> license.

Corresponding Author:

Solikhin Department of Informatics Engineering STMIK Himsya Jl. Raya Karanganyar Tugu Km. 12 No. 58 Semarang, Indonesia Email: solikhin@stmik-himsya.ac.id

1. INTRODUCTION

Rail transit is a very viable option for meeting public transportation needs. The demand for a more efficient transportation system is growing. Transportation services are a fast-growing industry in a developing country like Indonesia. The planning and management of genuine railway business resources determine the quality of transportation services. Better serve the community and deal with rising transportation costs. Predicting passenger volume is very important in the field of rail transportation [1]. The key to increasing the operating efficiency and economic income of rail transport companies is the accurate and timely projection of the volume of rail passengers [1]. Accurate transportation volume predictions are critical for formulating strategies for future rail transportation growth, investment, and facility efficiency [2], as well as for local economic development, resource allocation, and cost reduction [3]. It also forms the basis for rail transport companies to determine whether to operate new trains [4], as well as how to allocate tickets [5] and taking ticket prices into consideration [6]. Prediction of the volume of train passengers on a large scale, not only includes predictions of passengers in one area but also passengers in all regions.

The requirement for public transportation services may be controlled sensibly by offering effective ground transportation services, therefore accurate forecasting is critical for every railway firm organization.

Surprisingly, the number of train passengers at a station has been discovered to be a proxy for gauging a railway company's resource usage. It is obvious that accurate forecasting of the volume of railway passengers at the stations is critical to the efficient planning and distribution of railway company resources. Evaluating and forecasting the number of train passengers is a difficult and time-consuming task. According to past study, the results of fuzzy time series predictions are generally not obtained directly for the next time period.

Furthermore, the forecasting process and its results must be intelligible not only by rail transportation service company administrators, but also by individuals who make decisions based on the results. However, the current forecasting practice persists, in many ways, completely theoretical and statistically based approaches, notwithstanding the research that has been done to cope with complex time series data. To anticipate train passenger volume, It is vital to use soft computing-based algorithms that are scientifically sound and dependable. This soft computational approach should be able to deal with time series data that is complicated and create approximation values with a small error margin.

Soft computing approaches have been employed to solve prediction difficulties in recent years. In the application section, we describe a novel software system that was created using the presented theory. This covers linguistic study of time series and their trends. As a result of its ability to solve the forecasting issue in uncertain situations where historical data is incomplete or vague, fuzzy time series are now widely used in a variety of fields, including enrollment forecasting, stock index forecasting, temperature forecasting, and so on, with better forecasting results. Forecasting is the technique of projecting future performance based on previously collected data. In everyday life, forecasting plays a crucial role. The traditional time squence approach is a prominent forecasting method. The classical time series method, despite its widespread use, has a flaw: if the forecasted results are real numbers, what has been described cannot be understood. To circumvent this flaw, the fuzzy time series approach [7] is used. The fuzzy time series approach converts real-number anticipated values into linguistic values.

The goal of this research is to forecast the number of railway passengers using a combination of the fuzzy time series (FTS) and percentage change methods, which are prediction methods based on the percentage change of a datum over a period of time [8] and the classic double exponential smoothing Holt (DES Holt) method. The FTS is employed as the forecasting basis, percentage of change is used to build the set of universes, and the DES Holt method is used to forecast the following period in this case study. Thus it can be said that the proposed method has unique characteristic that is, it is a hybrid, in the sense that FTS modeling is combined simultaneously with statistical modeling (DES Holt).

In terms of prediction, numerous researchers recommend using the FTS approach. Song and Chissom [7] were the forerunners of the FTS concept, using it to model academic enrollment data at the University of Alabama [7], [9]-[21], predict temperature [22], [23], forecast the stock market index [24]-[35]. Other researchers have developed many improvements to the FTS prediction method, which addressed the following issues [16]: determining the effective interval length [15], [35]-[41], fuzzy logic relationship [42], and defuzzification methodology [21]. The use of fuzzy metric techniques in predictions [8], [43], [44], as well as the percentage change as the universe of speech [8], [44].

2. RESEARCH METHOD

2.1. Fuzzy time series: a basic concept

The first FTS definitions were presented in 1993 [45]. The following are the concepts of FTS. Let U denote the discourse universe, where $U = \{u_1, u_2, ..., u_n\}$. A_i of U is a fuzzy set defined by:

$$A_{i} = fA_{i}(u_{1})/u_{1} + fA_{i}(u_{2})/u_{2} + \cdots A_{i}(u_{n})/u_{n},$$
(1)

where f_A is the fuzzy set A_i is membership function; $f_{Ai}: U \to [0, 1]$. u_k is a component of the A_i fuzzy set and $f_{Ai}(u_k)$ is the degree to which u_k belongs to $A_i, f_{Ai}(u_k) \in [0, 1]$ and 1 < k < n.

Definition 1. Y(t) ($t = \cdots, 0, 1, 2, \ldots$), is a subset of R. Let Y(t) denote the discourse universe as defined by the fuzzy set $f_i(t)$. If F(y) is made up of $f_1(t)$, $f_2(t)$, and so on, F(t) is a FTS on Y(u) ($t = \ldots, 0, 1, 2, \ldots$). Definition 2. If a fuzzy relationship R(t - 1, t) exists such that $F(t) = F(t - 1) \times R(t - 1, t)$ where \times represents an operator, then F(t) is said to be induced by F(t - 1).

Let $F(t) = A_i$ and $F(t-1) = A_j$. The relationship between F(t) and F(t-1) (referred to as a fuzzy logical relationship, FLR) can be denoted by $A_i \rightarrow A_j$; where A_i is called the left-hand side (LHS) and A_i the right-hand side (RHS) of the FLR.

Definition 3. Given two FLR on the LHS with the same fuzzy sets, $A_i \rightarrow A_{j1}$, $A_i \rightarrow A_{j2}$. Both FLR can be combined into FLRG (fuzzy logical relationship groups) $A_i \rightarrow A_{j1}$, A_{j2} .

2.2. The algorithm's key concepts

2.2.1. Procedure for event discretization

In FTS theory, the discretization process reduces the complexity of the discourse world. This approach is typically used as a first step in preparing the universe of speech for numerical evaluation by tying events from different time periods together. Differences in time series data have been employed as the universe of discourse in several forecasting systems [46]. Time series data differences can improve forecasting accuracy. However, estimates of growing and decreasing rates of time series data cannot be made solely on the basis of disparities. As a result, the universe of discourse in our method is defined as the percentage of change (PoC) from time t to time t + 1.

As PoC(t+1) = (X(t+1) - X(t))X(t), where X(t+1) is the value at time t+1 index and X(t) is the actual value at time t index, the event discretization function can be defined in such a way that its value at time t index correlates with the occurrence of the event at a specific time in the future. PoC is the percentage change in value from time t to time t + 1. Example: The PoC of period 2012/2 is calculated as (9515-10223)/10223, which equals -6.93 percent, as shown in Table 1. The PoC for the following year/month is calculated in the same way.

Table 1. Calculation example for PoC							
Year	Month	Time Series Data	PoC				
2012	1	10223					
2012	2	9515	-6.93%				
2012	3	10787	13.37%				

2.2.2. Procedure for dividing frequency density

We changed the approach for dividing the frequency density [8], [9], [43], [44] in this session to:

9926

-7.98%

- Calculate the number of PoCs that fall in each interval.
- Determine the ranking based on the number of frequencies.

2012

- Divide the interval by the biggest ranking minus one to find the interval.

4

In the same manner, repeat for the next interval.

Table 2 shows sample data at intervals along the number of PoC. In Table 2, the interval {-15,-10} has the highest PoC frequency. It is subdivided into three parts: $\{-10, -8.33\}, \{-8.33, -6.67\}, \text{ and } \{-6.67, -5\}.$ Furthermore, the interval {-10, -5} is the interval with the next highest frequency of data. It will be separated into two sections: $\{-10, -7.5\}$ and $\{-7.5, -5\}$. After that, leave the intervals $\{-5, 0\}$ and $\{0, 5\}$ unaltered.

Table 2. PoC frequency with interval							
Interval	Number of PoC	Ranking					
{-15,-10}	1	3					
{-10,-5}	4	1					
{-5,0}	1	3					
{0,5}	3	2					

2.2.3. Define fuzzy set based on triangular membership function

Based on the interval produced using the triangular membership function, defining fuzzy set $A_i = 1, 2, 3, 4, \dots, n$. Then, to calculate the anticipated value of the percentage change, find the mean value at the interval obtained. Then, using (2), estimate the percentage change data using the triangle membership function.

$$t_{j} = \begin{cases} \frac{\frac{1+0.5}{\frac{1}{a_{1}+a_{2}}}}{\frac{0.5+1+0.5}{a_{j-1}+a_{j}+a_{j+1}}}, & \text{if } j = 1, \\ \frac{\frac{0.5+1+0.5}{\frac{0.5}{a_{j-1}+a_{j}+a_{j+1}}}}{\frac{0.5+1}{\frac{0.5}{a_{n-1}+a_{n}}}}, & \text{if } 2 \le j \le n-2, \end{cases}$$

$$(2)$$

where a_{i-1}, a_i, a_{i+1} are the mean of the fuzzy intervals of $x_i - 1, x_i, x_i + 1$ respectively. t_i generates prediction of the percentage change in the number of train passengers from month to month.

2.2.4. Determining the data value based on the forecasting results $t_i \rightarrow F(t)$

where: x_{t-1} =actual data to t-1

2.2.5. Determine the prediction for the next time period t + 1

The combination of methods using the DES Holt approach. The DES is a popular technique for predicting the trend of time series data using simple linear equations in business and economics [47]. Introduction A class of forecasting algorithms is described by the exponential smoothing (ES) method [48]. In corporate forecasting, ES is the most used family of forecasting models [49]. The double exponential smoothing (DES) is a trend time series extension of the exponential smoothing (ES) [50]. The calculate prediction for the next time period t + 1 as shown in (3)-(7):

$$S'_{t} = \alpha X_{t} + (1 - \alpha)(S'_{t-1} + t_{t-1})$$
(3)

$$t_t = \beta(S'_t - S'_{t-1}) + (1 - \beta)t_{t-1} \tag{4}$$

$$F_{t+m} = S'_t + t_{tm} \tag{5}$$

$$S_1' = X_1 \tag{6}$$

$$t_1 = \frac{(x_2 - x_1) + (x_4 - x_3)}{2} \tag{7}$$

where: X_t =Actual data at time t

 S'_t = Single smoothing value

 t_t =Smoothing trend

 α, β =Smoothing parameter between 0 – 1

 F_{t+m} =Forecast value

m =Future period

2.2.6. Steps in the algorithm

Historical data and graphs of the number of train passengers from January 2006 to December 2019 obtained from the statistics central agency (BPS) are shown in Figure 1. In order to solve the prediction issue in this case of the number of train passengers using the FTS and percentage change methods, the steps are carried out in 7 steps.

Figure 1. Graph of the actual train passengers data

Step 1: determining historical data of the actual number of train passengers in the form of time series data $X = x_1, x_2, x_3, x_4, x_5, \dots, x_n$, then $X = [11828, 11931, 13314, 12909, 13575, \dots, 37463]$.

Step 2: determining the set of *U* universe by:

a. Calculating the real data's percentage change on the number of train passengers using (8).

$$d_t = \left(\frac{X_i - X_{i-1}}{X_{i-1}}\right) * 100 \tag{8}$$

ISSN: 2302-9285

b. Determining LL and UL from the results of the percentage change, then the obtained value of LL is -21.4255 and UL 23.5273. Thus U can be determined using (9).

$$U = [LL - D_1, UL + D_2] \tag{9}$$

The values of D_1 and D_2 are positive integers to assist in defining the set of U universe, so that the set of universes is defined U = [-23.00, 25.00].

c. Forming an interval class by calculating the number of intervals using (10).

$$B = 1 + 3.3 * \log(n) \tag{10}$$

n=number of percentage change of data.

- $B = 1 + 3.3 * \log(167) = 8.3350^{*}8$
- d. Calculating the length of the interval class using formula 11.

$$P = \frac{UL - LL}{B}$$

$$P = \frac{25.00 - (-23.00)}{8} = 6.00$$
(11)

Step 3: based on the result of forming the interval class on the set of universe, then the frequency of the percentage change of data included in each of these intervals was calculated and ranked based on the frequency, as shown in Table 3.

Table 3. Frequency and ranking							
Initial Interval Class	Frequency	Ranking					
[-23.00, -17.00]	2	1					
[-17.00, -11.00]	3	2					
[-11.00, -5.00]	23	5					
[-5.00, 1.00]	65	8					
[1.00, 7.00]	40	7					
[7.00, 13.00]	25	6					
[13.00, 19.00]	6	4					
[19.00, 25.00]	3	3					

Step 4: determining each fuzzy set x_i based on the divided interval and fuzzification of the historical data of the number of train passengers, where the fuzzy set x_i shows the linguistic value from month to month of the percentage change of data represented by the fuzzy set. Dividing the length of the interval based on the ranking of the data with the largest to the smallest frequency, for example n = the largest frequency rating. The length of the interval is 6.00, the ranking that is at the greatest frequency is 8, then for the first interval it is divided into n - 1 = 8 - 1 = 7 intervals with the same interval length, namely 6.00/7 = 0.8571. The second interval is divided into n - 2 = 8 - 2 = 6 intervals with the same interval length, namely 6.00/6 =1.00. The third interval is divided into n - 3 = 8 - 3 = 5 intervals with the same interval length, namely 6.00/5 = 1.20 and so on until the ninth last interval. The total number of intervals obtained becomes 29 interval classes. Then determining the mean value of each interval class as shown in Table 4.

Step 5: defuzzifying the fuzzy data shown in Table 5 (in Appendix).

Step 6: determining the value of the data based on the results of forecasting $t_j \rightarrow F(t)$ where F(t) is the forecasting value of the data percentage change. The (12) is used to determine F(t). The results of F(t) are shown in Table 5.

$$F(t) = \left(\frac{t_j}{100} * x_{t-1}\right) + x_{t-1} \tag{12}$$

where: x_{t-1} =actual data to t-1

whereas for t + 1 forecasting used the classic double exponential smoothing holt (DES Holt) forecasting method with $\alpha = 0.38$ and $\gamma = 0.01$, the value of data smoothing in December 2019 was 36766 while the trend smoothing value was 145 using formula 3, 4, 5, 6, and 7. So that the forecast value for January 2020 is:

 $F(Jan\ 2020) = st + bt\ (m) = 36766 + 145 * (1) = 36911$ then the forecast results for January 2020 is: $F(Jan\ 2020) = \left(\frac{1.9643}{100} * 37463\right) + 37463 = 38199.$

Step 7: calculating the average forecasting error rate (AFER) and mean square error (MSE) [44] between real data and predicted results, namely the formulas 13 and 14 shown in Table 5 and Figure 2.

$$AFER = \frac{\left(\frac{|A_i - F_i|}{A_i}\right)}{n} * 100\%$$
(13)

$$MSE = (\sum (A_i - F_i)^2)/n$$
(14)

where: i=1 ..., n

Table 4. Frequency distribution, fuzzy set, and mean value

Fuzzy	Intervals	Mean
A1	[-23.0000, -22.1429]	-22.5714
A2	[-22.1429, -21.2857]	-21.7143
A3	[-21.2857, -20.4286]	-20.8571
A4	[-20.4286, -19.5714]	-20.0000
A5	[-19.5714 , -18.7143]	-19.1429
A6	[-18.7143 , -17.8571]	-18.2857
A7	[-17.8571, -17.0000]	-17.4286
A8	[-17.0000, -16.0000]	-16.5000
A9	[-16.0000, -15.0000]	-15.5000
A10	[-15.0000, -14.0000]	-14.5000
A11	[-14.0000, -13.0000]	-13.5000
A12	[-13.0000, -12.0000]	-12.5000
A13	[-12.0000, -11.0000]	-11.5000
A14	[-11.0000, -9.8000]	-10.4000
A15	[-9.8000, -8.6000]	-9.2000
A16	[-8.6000, -7.4000]	-8.0000
A17	[-7.4000, -6.2000]	-6.8000
A18	[-6.2000, -5.0000]	-5.6000
A19	[-5.0000, -3.5000]	-4.2500
A20	[-3.5000, -2.0000]	-2.7500
A21	[-2.0000, -0.5000]	-1.2500
A22	[-0.5000, 1.0000]	0.2500
A23	[1.0000, 3.0000]	2.0000
A24	[3.0000, 5.0000]	4.0000
A25	[5.0000, 7.0000]	6.0000
A26	[7.0000, 10.0000]	8.5000
A27	[10.0000, 13.0000]	11.5000
A28	[13.0000, 19.0000]	16.0000
A29	[19.0000, 25.0000]	22.0000

Figure 2. Prediction result graph

3. CONCLUSION

The use of FTS and PC techniques, as well as a combination of DES Holt, has proven to be useful in predicting the number of railway passengers over the next time period. This may be seen in the prediction results for January 2020, which are 38199, with AFER=0.89 percent and MSE=131325. It can be utilized as decision assistance for railway management based on the aforesaid predicted results. Based on the aforementioned forecast results, railway management can use it as decision support to develop policies for the future period in terms of planning, resources, setting departure schedules, deciding ticket prices, adding train carriages, and adding tickets. Researchers will adapt these methods in the future to handle predictions in the same case study by constructing web-based applications and/or employing additional methods to anticipate data based on different intervals in order to improve accuracy.

APPENDIX

Table 5. Prediction results								
Month	Passangers	%	Fuzzy	Prediction	Forecast	$A_{1} - F_{2}$	AFED	MSE
Year	$(A)_i$	$Change(d_t)$	Sets	$\%(t_j)$	$(F_i)t$	$A_i - P_i$	APEK	MSE
Jan06	11828	-	-	-	-	-	-	-
Feb06	11931	0.8708	A22	0.5195	11889	42	0.3483	1726.8835
Mar06	13314	11.5917	A27	11.2975	13279	35	0.2636	1231.5108
Apr06	12909	-3.0419	A20	-2.2694	13012	-103	0.7967	10578.0034
May06	13575	5.1592	A25	5.7063	13646	-71	0.5203	4987.9602
Jun06	13203	-2.7403	A20	-2.2694	13267	-64	0.4842	4086.5635
Jul06	14433	9.3161	A26	8.1813	14283	150	1.0380	22445.2185
Aug06	13255	-8.1619	A16	-7.9090	13291	-36	0.2753	1332.0249
Sep06	13436	1.3655	A23	0.7619	13356	80	0.5955	6401.5189
Oct06	14290	6.3561	A25	5.7063	14203	87	0.6109	7621.6982
Nov06	13631	-4.6116	A19	-3.9495	13726	-95	0.6942	8953.3543
Dec06	13614	-0.1247	A22	0.5195	13702	-88	0.6450	7710.6760
Jan07	13960	2.5415	A23	0.7619	13718	242	1.7355	58696.8138
Feb07	10969	-21.4255	A2	-21.6974	10931	38	0.3460	1440.7369
Mar07	13409	22.2445	A29	26.0741	13829	-420	3.1327	176454.3844
Apr07	14415	7.5024	A26	8.1813	14506	-91	0.6315	8287.6048
May07	15232	5.6677	A25	5.7063	15238	-6	0.0365	30.9390
Jun07	15104	-0.8403	A21	1.9643	15531	-427	2.8284	182499.8772
Ju107	16454	8.9380	A26	8.1813	16340	114	0.6946	13062.1934
Aug07	15419	-6.2903	A17	-6.6924	15353	66	0.4292	4379.0085
Sep07	15033	-2.5034	A20	-2.2694	15069	-36	0.2400	1301.6315
Oct07	15866	5.5411	A25	5.7063	15891	-25	0.1565	616.3887
Nov07	14391	-9.2966	A15	-9.1211	14419	-28	0.1935	775.6801
Dec07	15084	4.8155	A24	3.4286	14884	200	1.3232	39837.9035
Jan08	15027	-0.3779	A22	0.5195	15162	-135	0.9008	18321.9273
Feb08	14378	-4 3189	A19	-3 9495	14434	-56	0 3861	3081 8759
Mar08	16071	11.7749	A27	11.2975	16002	69	0.4271	4711.8030
Apr08	15711	-2 2401	A20	-2 2694	15706	5	0.0300	22 2641
May08	16363	4.1500	A24	3 4286	16250	113	0.6926	12845.3232
Jun08	17010	3 9540	A24	3 4286	16924	86	0.5055	7393 0638
Ju108	17887	5 1558	A25	5 7063	17981	-94	0.5235	8768 5637
Aug08	17108	-4 3551	A19	-3 9495	17181	-73	0.4241	5264 9666
Sep08	15879	-7 1838	A17	-6 6924	15963	-84	0.5294	7065 6406
Oct08	17337	9 1819	A26	8 1813	17178	159	0.9164	25244 2986
Nov08	15973	-7 8676	A16	-7 9090	15966	7	0.0449	51 5504
Dec08	15332	-4 0130	A19	-3 9495	15342	-10	0.0662	103 0784
Jan09	14494	-5 4657	A18	-5 4091	14503	-9	0.0599	75 3133
Feb09	13869	-4 3121	A19	-3 9495	13922	-53	0.3790	2763 1074
Mar09	17132	23 5273	Δ29	26.0741	17/85	-353	2.0617	12/759 2597
Apr09	16775	-2 0838	A20	-2 2694	16743	32	0.1896	1011 0514
May00	17824	6 2534	A20	5 7063	17732	02	0.1370	8421 5827
Jup09	18143	1 7807	A23	0.7610	17960	183	1 0007	33561 5265
Juli09	19295	1.7097	A23	0.7610	1900	103	0.5644	10767 7008
Jui09	17527	1.5558	A23	3 0/05	17650	104	0.3044	17305 4414
Aug09	17227	-4.0008	A19 A21	-5.9495	17039	-132	2 4159	248420.0501
OctOD	17201	-1.4035	A21 A22	0 5105	17271	-090	0.5105	8058 02/2
Nov00	16779	2 0107	A20	2 2604	1/3/1	-90	0.5195	0030.7243
Dec00	17581	-2.9107	A20	-2.2094	17353	-111	1 2055	51872 0474
Jon 10	17301	4.7000	A24 A21	1.0642	17026	220 502	2 8 8 2 0	252246 6025
Jaiii0 Eab10	1/424	-0.6950	A21	1.9045	1/920	-302	2.0030	232340.0023
Febiu Mario	15207	-12.7238	A12	-12.4399	15255	-40 67	0.3024	2114.8004
Amit O	16992	11./380	A21	11.29/3	10925	07	0.3942	440/.1421
Aprilo	10052	-0.9410	A21	1.9043	1/520	-494	2.9333	243010.2710

Prediction of passenger train using fuzzy time series and percentage change methods (Solikhin)

Table 5. Prediction results (continue)								
Month	Passangers	%	Fuzzy	Prediction	Forecast	·		
Year	$(A)_i$	Change (d_{i})	Sets	$\%(t_i)$	$(F_i)t$	$A_i - F_i$	AFER	MSE
Mov10	16099	0.0268	A 22	0.5105	16010	60	0.4026	4700 6050
Way 10	10900	1.5052	A22	0.3193	10919	142	0.4030	4700.0050
Junio	17259	1.5952	A23	0.7619	1/11/	142	0.8203	20041.3793
Juilo	1/680	2.4393	A23	0.7619	17390	290	1.63/5	83811.8805
Aug10	16477	-6.8043	A17	-6.6924	16497	-20	0.1200	391.1142
Sep10	17301	5.0009	A25	5.7063	17417	-116	0.6718	13508.4976
Oct10	16908	-2.2715	A20	-2.2694	16908	0	0.0022	0.1352
Nov10	16469	-2.5964	A20	-2.2694	16524	-55	0.3357	3056.5934
Dec10	17733	7.6750	A26	8.1813	17816	-83	0.4702	6953.1214
Jan11	16891	-4.7482	A19	-3.9495	17033	-142	0.8386	20062.5293
Feb11	14890	-11.8465	A13	-11.4264	14961	-71	0.4766	5036.2833
Mar11	16978	14 0228	A28	15 5394	17204	-226	1 3300	50989 8016
Apr11	16//1	-3 1629	A20	-2 2694	16593	-152	0.9227	23012 2445
Mov11	17522	6 5750	A25	5 7062	17270	142	0.9227	20200 2057
Jun 11	17322	1 4667	A23	1.0642	17966	601	2 4 9 2 1	20399.0937
Juiiii	17203	-1.4007	A21	1.9045	1/800	-001	5.4621	301420.0291
Julli	18132	5.0217	A25	5.7063	18250	-118	0.6518	13969.2683
Aug11	14846	-18.1227	A6	-18.2656	14820	26	0.1746	671.7734
Sep11	16921	13.9768	A28	15.5394	17153	-232	1.3709	53810.9629
Oct11	16461	-2.7185	A20	-2.2694	16537	-76	0.4616	5774.6992
Nov11	16179	-1.7131	A21	1.9643	16784	-605	3.7415	366437.8697
Dec11	16811	3.9063	A24	3.4286	16734	77	0.4598	5973.9756
Jan12	16283	-3.1408	A20	-2.2694	16429	-146	0.8996	21458.6767
Feb12	15490	-4 8701	A19	-3 9495	15640	-150	0.9678	22472 8367
Mar12	17090	10 3292	A27	11 2975	17240	-150	0.8776	22/195 75/6
Apr12	16746	2 0120	A20	2 2604	16702	-150	0.2618	1022 2856
Apri 2	10740	-2.0129	A20	-2.2094	10702	44	0.2018	1922.2030
May 12	1///1	0.1209	A25	5.7063	17/02	69	0.3907	4819.0927
Jun12	18062	1.63/5	A23	0.7619	1/906	156	0.8615	24211.9396
Jul12	18309	1.3675	A23	0.7619	18200	109	0.5974	11965.0167
Aug12	17056	-6.8436	A17	-6.6924	17084	-28	0.1623	766.2466
Sep12	16368	-4.0338	A19	-3.9495	16382	-14	0.0879	206.7873
Oct12	17127	4.6371	A24	3.4286	16929	198	1.1550	39129.3890
Nov12	15773	-7.9056	A16	-7.9090	15772	1	0.0036	0.3260
Dec12	16104	2.0985	A23	0.7619	15893	211	1.3091	44447.0644
Jan13	14900	-7 4764	A16	-7.9090	14830	70	0.4675	4852,8136
Feb13	14594	-2 0537	A20	-2 2694	14562	32	0.2203	1033 2097
Mar13	15826	8 4418	A26	8 1813	15788	38	0.2402	1445 1252
Apr13	16000	1 0005	A20 A23	0.7610	15047	53	0.3330	2853 7041
May12	16112	0.7062	A23	0.7019	15947	20	0.3335	2033.7941
May 15	10115	0.7005	A22	0.3193	10085	50	0.1655	692.9901
Jun13	1/301	1.3729	A20	8.1815	1/431	-130	0.7529	10907.0149
Jul13	20245	17.0164	A28	15.5394	19989	256	1.2622	65299.1872
Aug13	19423	-4.0603	A19	-3.9495	19445	-22	0.1155	503.1867
Sep13	19738	1.6218	A23	0.7619	19571	167	0.8462	27894.0743
Oct13	20534	4.0328	A24	3.4286	20415	119	0.5808	14225.0123
Nov13	19919	-2.9950	A20	-2.2694	20068	-149	0.7480	22200.1946
Dec13	21417	7.5205	A26	8.1813	21549	-132	0.6147	17329.5404
Jan14	21092	-1.5175	A21	1.9643	21838	-746	3.5354	556055.2653
Feb14	19998	-5.1868	A18	-5.4091	19951	47	0.2344	2198.2279
Mar14	22836	14,1914	A28	15.5394	23106	-270	1.1804	72662,1693
Apr14	21908	-4 0638	A19	-3 9495	21934	-26	0 1 1 9 1	681 2786
Mav14	22988	4 9297	A24	3 4286	22659	329	1.4306	108154 5990
Jup14	22900	3 7063	A24	3 4286	22037	64	0.2678	4075 5582
Jul14	23640	5.6208	A19	5 4001	23770	50	0.2078	4075.5582
Ju114	22300	-3.0208	A10	-5.4091	22550	-30	0.2245	2347.3181
Aug14	23199	3.1067	A24	3.4286	23271	-72	0.3122	5245.8840
Sep14	23593	1.6983	A23	0.7619	23376	217	0.9208	47195.6764
Oct14	24923	5.6373	A25	5.7063	24939	-16	0.0653	265.2320
Nov14	24356	-2.2750	A20	-2.2694	24357	-1	0.0057	1.9389
Dec14	26275	7.8790	A26	8.1813	26349	-74	0.2803	5424.0133
Jan15	24676	-6.0856	A18	-5.4091	24854	-178	0.7204	31599.1873
Feb15	22790	-7.6431	A16	-7.9090	22724	66	0.2879	4305.9719
Mar15	27267	19.6446	A29	26.0741	28732	-1465	5.3738	2147047.0990
Apr15	26565	-2.5745	A20	-2.2694	26648	-83	0.3132	6921.7822
Mav15	27910	5 0631	A25	5 7063	28081	-171	0.6122	29198 9495
Jun 15	27562	_1 2460	Δ21	1 96/13	28/58	_206	3 2517	803737 1068
Juil 5	27502	-1.2407 0 1014	121	0.5105	20+30	-090	0 2275	8692 2010
Jul15	2/012	0.1814	AZZ	0.5195	21/05	-95	0.55/5	0002.3919
Aug15	27796	0.0004	AZZ	0.5195	21155	41	0.1439	1043.18/1
Sep15	27549	-0.8886	A21	1.9643	28342	-793	2.8/85	628837.7974
Oct15	28718	4.2433	A24	3.4286	28494	224	0.7816	50383.6272
Nov15	27669	-3.6528	A19	-3.9495	27584	85	0.3079	7260.0493
Dec15	29831	7.8138	A26	8.1813	29933	-102	0.3409	10342.0347
Jan16	28358	-4.9378	A19	-3.9495	28653	-295	1.0397	86928.6133
Feb16	26510	-6.5167	A17	-6.6924	26460	50	0.1880	2484.2384

Bulletin of Electr Eng & Inf, Vol. 10, No. 6, December 2021 : 3007 – 3018

ISSN: 2302-9285

Table 5. Prediction results (continue)								
Month Vear	Passangers	% Change(d)	Fuzzy Sets	Prediction $%(t_{\cdot})$	Forecast $(E_{i})t$	$A_i - F_i$	AFER	MSE
Mar16	28617	7.9479	A26	8 1813	28679	-62	0.2162	3828 3955
Apr16	28435	-0.6360	A21	1 9643	20079	-744	2 6169	553714 1646
Mav16	30703	7 9761	A26	8 1813	30761	-58	0.1901	3406 4595
Jun16	29159	-5.0288	A18	-5 4091	29042	117	0.4004	13631 2403
Jul16	28831	-1 1249	A21	1 9643	29042	-901	3 1243	811379 6655
Aug16	29588	2 6256	A23	0.7619	29051	537	1 8161	288729 0843
Sep16	29516	-0 2433	Δ22	0.5195	29031	-226	0.7647	50942 3129
Oct16	30263	2 5308	Δ23	0.7619	29742	522	1 7253	272605 2430
Nov16	29690	-1 8934	A23	1 9643	30857	-1167	3 9321	1362943 8739
Dec16	32150	8 2856	A26	8 1813	32119	-1107	0.0963	958 4760
Jan17	30949	-3 7356	A20 A19	-3 9/95	30880	69	0.0903	1726 7536
Feb17	27342	11 6547	A13	11 4264	27413	71	0.2584	4000 4000
Mar17	32170	17 6578	A13 A28	15 5394	31591	579	1 8005	335508 4622
$\Delta pr17$	31502	2 0765	A20	2 2604	31391	62	0.1070	3852 0846
Apr17	22745	-2.0703	A20	-2.2094	24070	224	0.1970	111747 5700
May 17	20722	7.1202	A20	0.1015	34079	-554	0.9900	2125 2770
Juii 1 /	24210	-0.9334	A15	-9.1211	24104	30 116	0.1820	5125.5770 12470 6029
Juli /	22701	11.0735	A27	11.2975	24094	110	0.5565	13470.0038
Aug17	22409	-1.3127	A21	2.0405	22456	-1195	5.5504	1425121.4155
Sep17	32498	-3.8205	A19	-3.9495	32430	42	0.1279	1/2/.4022
Oct17	35070	7.9143	A20	8.1815	33137	-8/	0.2474	7529.5272
Nov17	34301	-2.0217	A20	-2.2094	34274	87	0.2529	122264 6624
Dec1/	30807	7.1185	A20	8.1813	3/1/2	-305	0.9922	133304.0024
Jan18	34/1/	-5.6/83	AI8	-5.4091	34816	-99	0.2854	9816.1021
Feb18	31278	-9.9058	A14	-10.3103	31138	140	0.4490	19/19./005
Mar18	358/5	14.69/2	A28	15.5394	36138	-263	0.7342	693/8.4500
Apr18	35/54	-0.3373	A22	0.5195	36061	-307	0.8597	944/2.5109
May 18	35482	-0./608	A21	1.9643	36456	-974	2.7459	949281.5670
Jun18	33030	-6.9105	AI/	-6.6924	33107	-//	0.2343	5988.9705
Jull8	36800	11.4139	A27	11.2975	36/62	38	0.1044	14/6./991
Aug18	35190	-4.3/50	A19	-3.9495	35347	-15/	0.4450	24523.1591
Sep18	34504	-1.9494	A21	1.9643	35881	-13//	3.9915	1896/68.6523
Oct18	36236	5.0197	A25	5.7063	36473	-237	0.6538	56121.4592
Nov18	35298	-2.5886	A20	-2.2694	35414	-116	0.3276	133/5.6092
Dec18	37965	7.5557	A26	8.1813	38186	-221	0.5817	48774.9222
Jan19	35122	-7.4885	Al6	-7.9090	34962	160	0.4545	25486.2888
Feb19	31899	-9.1766	A15	-9.1211	31918	-19	0.0611	380.1640
Mar19	35751	12.0756	A27	11.2975	35503	248	0.6943	61605.2729
Apr19	35809	0.1622	A22	0.5195	35937	-128	0.3567	16312.3096
May19	35102	-1.9744	A21	1.9643	36512	-1410	4.0180	1989203.2630
Jun19	35090	-0.0342	A22	0.5195	35284	-194	0.5539	37771.2309
Jul19	39035	11.2425	A27	11.2975	39054	-19	0.0494	372.4810
Aug19	35189	-9.8527	A14	-10.3103	35010	179	0.5076	31907.1068
Sep19	35221	0.0909	A22	0.5195	35372	-151	0.4282	22740.6910
Oct19	36448	3.4837	A24	3.4286	36429	19	0.0533	377.2532
Nov19	35877	-1.5666	A21	1.9643	37164	-1287	3.5871	1656222.1856
Dec19	37463	4.4207	A24	3.4286	37107	356	0.9501	126687.2913
Jan20	36911	-1.4735	A21	1.9643	38199	-1288	3.4892	1658636.0900
							0.8948	131324.6120

ACKNOWLEDGEMENTS

The author is grateful to the Republic of Indonesia's Ministry of Research and Technology/National Research and Innovation Agency (RISTEK-BRIN) who have supported this research. The author wishes to express his gratitude to the anonymous referees for their constructive recommendations and remarks, which helped to improve the manuscript's presentation.

REFERENCES

- Y. Wang, Z. Lin, L. Wang, H. Wang and J. Zhang, "Prediction of Railway Passenger Volume including Waiting Passengers without Tickets," 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2020, pp. 712-716, doi: 10.1109/ITAIC49862.2020.9338840.
- [2] W. q. Tian, P. Zhao and K. Qiao, "Railway Freight Volume Forecast Based on GRA-WD-WNN," 2019 4th International Conference on Intelligent Transportation Engineering (ICITE), 2019, pp. 84-88, doi: 10.1109/ICITE.2019.8880238.
- [3] X. Fuquan and Z. Yi, "Research on Forecast Model and Algorithm of Train Passenger Sending Volume," 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2019, pp. 807-811, doi: 10.1109/ICMTMA.2019.00182.

- [4] T. Widiyaningtyas, Muladi and A. Qonita, "Use of ARIMA Method To Predict The Number of Train Passenger In Malang City," 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 2019, pp. 359-364, doi: 10.1109/ICAIIT.2019.8834663.
- [5] J. Qin, W. Qu, X. Wu and Y. Zeng, "Differential Pricing Strategies of High Speed Railway Based on Prospect Theory: An Empirical Study from China," *Sustainability*, vol. 11, no. 14, pp. 1-17, 2019, doi: 10.3390/su11143804.
- [6] W. Huang and B. Shuai, "A Methodology for Calculating the Passenger Comfort Benefits of Railway Travel," J. Mod. Transport., Springer, vol. 26, no. 2, pp. 107-118, 2018, doi: 10.1007/s40534-018-0157-y.
- [7] C. H. Aladag, U. Yolcu, E. Egrioglu and A. Z. Dalar, "A New Time Invariant Fuzzy Time Series Forecasting Method Based on Particle Swarm Optimization," *Appl. Soft Comput.*, vol. 12, no. 10, pp. 3291-3299, 2012, doi: 10.1016/j.asoc.2012.05.002.
- [8] M. Stevenson and J. E. Porter, "Fuzzy Time Series Forecasting Using Percentage Change as the Universe of Discourse," World Academy of Science, Engineering and Technology, vol. 3, no. 7, pp. 464-467, 2009, doi: 10.5281/zenodo.1069993.
- [9] B. Garg, M. M. S. Beg and A. Q. Ansari, "A new computational fuzzy time series model to forecast number of outpatient visits," 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), 2012, pp. 1-6, doi: 10.1109/NAFIPS.2012.6290977.
- [10] E. Bai, W. K. Wong, W. C. Chu, M. Xia and F. Pan, "A Heuristic Time-Invariant Model for Fuzzy Time Series Forecasting," *Expert Syst. Appl.*, vol. 38, no. 3, pp. 2701-2707, 2011, doi: 10.1016/j.eswa.2010.08.059.
- [11] E. Egrioglu, C. H. Aladag, U. Yolcu, V. R. Uslu and N. A. Erilli, "Fuzzy Time Series Forecasting Method Based on Gustafson-Kessel Fuzzy Clustering," *Expert Syst. Appl.*, vol. 38, no. 8, pp. 10355-10357, 2011, doi: 10.1016/j.eswa.2011.02.052.
- [12] E. Egrioglu, C. H. Aladag and U. Yolcu, "Fuzzy Time Series Forecasting with a Novel Hybrid Approach Combining Fuzzy C-Means and Neural Networks," *Expert Syst. Appl.*, vol. 40, no. 3, pp. 854-857, 2013.
- [13] F. J. J. D. Santos and H. D. A. Camargo, "Preprocessing in Fuzzy Time Series to Improve the Forecasting Accuracy," 2013 12th International Conference on Machine Learning and Applications, 2013, pp. 170-173, doi: 10.1109/ICMLA.2013.185.
- [14] J. Chang and Chung-Chi Liu, "A fuzzy time series model based on N-th Quantile Discretization Approach for TAIEX forecasting," 2013 5th International Conference on Knowledge and Smart Technology (KST), 2013, pp. 5-10, doi: 10.1109/KST.2013.6512778.
- [15] L. Wang, X. Liu and W. Pedrycz, "Effective Intervals Determined by Information Granules to Improve Forecasting in Fuzzy Time Series," *Expert Syst. Appl.*, vol. 40, no. 14, pp. 5673-5679, 2013, doi: 10.1016/j.eswa.2013.04.026.
- [16] P. Singh and B. Borah, "An Efficient Time Series Forecasting Model Based on Fuzzy Time Series," *Eng. Appl. Artif. Intell.*, vol. 26, no. 10, pp. 2443-2457, 2013, doi: 10.1016/j.engappai.2013.07.012.
- [17] S. M. Chen and C. D. Chen, "Handling Forecasting Problems Based on High-Order Fuzzy Logical Relationships," *Expert Syst. Appl.*, vol. 38, no. 4, pp. 3857-3864, 2011, doi: 10.1016/j.eswa.2010.09.046.
- [18] S. M. Chen and K. Tanuwijaya, "Fuzzy Forecasting Based on High-Order Fuzzy Logical Relationships and Automatic Clustering Techniques," *Expert Syst. Appl.*, vol. 38, no. 12, pp. 15425-15437, 2011, doi: 10.1016/j.eswa.2011.06.019.
- [19] S. S. Gangwar and S. Kumar, "Partitions Based on Computational Method for High-Order Fuzzy Timeseries Forecasting," *Expert Syst. Appl.*, vol. 39, no. 15, pp. 12158-12164, 2012, doi: 10.1016/j.eswa.2012.04.039.
- [20] V. R. Uslu, E. Bas, U. Yolcu and E. Egrioglu, "A Fuzzy Timeseries Approach Based on Weights Determined by the Number of Recurrences of Fuzzy Relations," *Swarm Evol. Comput.*, vol. 15, pp. 19-26, 2014, doi: 10.1016/j.swevo.2013.10.004.
- [21] W. Qiu, X. Liu and H. Li, "A Generalized Method for Forecasting Based on Fuzzy Timeseries," *Expert Syst. Appl.*, vol. 38, no. 8, pp. 10446-10453, 2011, doi: 10.1016/j.eswa.2011.02.096.
- [22] N. Y. Wang and S. M. Chen, "Temperature Prediction and TAIFEX Forecasting Based on Automatic Clustering Techniques and Two-Factors High-Order Fuzzy Timeseries," *Expert Syst. Appl.*, vol. 36, no. 2, 2143-2154, 2009, doi: 10.1016/j.eswa.2007.12.013.
- [23] S. Li and Y. Cheng, "A Stochastic HMM-Based Forecasting Model for Fuzzy Time Series," in *IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)*, vol. 40, no. 5, pp. 1255-1266, Oct. 2010, doi: 10.1109/TSMCB.2009.2036860.
- [24] C. H. Cheng, L. Y. Wei, J. W. Liu and T. L. Chen, "OWA-Based ANFIS Model for TAIEX Forecasting," *Economic Modelling*, vol. 30, pp. 442-448, 2013, doi 10.1016/j.econmod.2012.09.047.
- [25] L. Y. Wei, C. H. Cheng and H. H. Wu, "A Hybrid ANFIS Based on N-Period Moving Average Model to Forecast TAIEX Stock," *Appl. Soft Comput.*, vol. 19, pp. 86-92, 2014, doi: 10.1016/j.asoc.2014.01.022.
- [26] Q. Cai, D. Zhang, B. Wu and S. C. H. Leung, "A Novel Stock Forecasting Model Based on Fuzzy Time Series and Genetic Algorithm," *Proc. Comput. Sci.*, vol. 18, pp. 1155-1162, 2013, doi: 10.1016/j.procs.2013.05.281.
- [27] Q. Cai, D. Zhang, W. Zheng and S. C. H. Leung, "A New Fuzzy Time Series Forecasting Model Combined with Ant Colony Optimization and Auto-Regression," *Knowl- Based Syst.*, vol. 74, pp. 61-68, 2015, doi: 10.1016/j.knosys.2014.11.003.
- [28] S. Cheng, S. Chen and W. Jian, "A Novel Fuzzy Time Series Forecasting Method Based on Fuzzy Logical Relationships and Similarity Measures," 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 2250-2254, doi: 10.1109/SMC.2015.393.
- [29] S. H. Cheng, S. M. Chen and W. S. Jian, "Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships and Similarity Measures," *Information Sciences*, vol. 327, pp. 272-287, 2016, doi: 10.1016/j.ins.2015.08.024.

- [30] S. Chen and C. Chen, "TAIEX Forecasting Based on Fuzzy Time Series and Fuzzy Variation Groups," in *IEEE Transactions on Fuzzy Systems*, vol. 19, no. 1, pp. 1-12, Feb. 2011, doi: 10.1109/TFUZZ.2010.2073712.
- [31] S. Chen, H. Chu and T. Sheu, "TAIEX Forecasting Using Fuzzy Time Series and Automatically Generated Weights of Multiple Factors," in *IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans*, vol. 42, no. 6, pp. 1485-1495, Nov. 2012, doi: 10.1109/TSMCA.2012.2190399.
- [32] S. Chen, G. M. T. Manalu, J. Pan and H. Liu, "Fuzzy Forecasting Based on Two-Factors Second-Order Fuzzy-Trend Logical Relationship Groups and Particle Swarm Optimization Techniques," in *IEEE Transactions on Cybernetics*, vol. 43, no. 3, pp. 1102-1117, June 2013, doi: 10.1109/TSMCB.2012.2223815.
- [33] S. Chen and S. Chen, "Fuzzy Forecasting Based on Two-Factors Second-Order Fuzzy-Trend Logical Relationship Groups and the Probabilities of Trends of Fuzzy Logical Relationships," in *IEEE Transactions on Cybernetics*, vol. 45, no. 3, pp. 391-403, March 2015, doi: 10.1109/TCYB.2014.2326888.
- [34] Y. Cheng and S. Li, "Fuzzy Time Series Forecasting With a Probabilistic Smoothing Hidden Markov Model," in IEEE Transactions on Fuzzy Systems, vol. 20, no. 2, pp. 291-304, April 2012, doi: 10.1109/TFUZZ.2011.2173583.
- [35] S. Xihao and L. Yimin, "Average-Based Fuzzy Timeseries Models for Forecasting Shanghai Compound Index," World Journal of Modelling and Simulation, vol. 4, no. 2, pp. 104-111, 2008.
- [36] C. Kai, F. Fang-Ping and C. Wen-Gang, "Notice of Retraction: A Novel Forecasting Model of Fuzzy Time Series Based on K-means Clustering," 2010 Second International Workshop on Education Technology and Computer Science, 2010, pp. 223-225, doi: 10.1109/ETCS.2010.249.
- [37] H. T. Liu and M. L. Wei, "An Improved Fuzzy Forecasting Method for Seasonal Time Series," *Expert Syst. Appl.*, vol. 37, no. 9, pp. 6310-6318, 2010, doi: 10.1016/j.eswa.2010.02.090.
- [38] P. Singh, "An Efficient Method for Forecasting Using Fuzzy Time Series," *Comput. Sci.*, *IGI-Global*, pp. 287-304, 2017, doi: 10.4018/978-1-5225-0914-1.ch013.
- [39] S. M. Chen and K. Tanuwijaya, "Multivariate Fuzzy Forecasting Based on Fuzzy Time Series and Automatic Clustering Techniques," *Expert Syst. Appl.*, vol. 38, no. 8, pp. 10594-10605, 2011, doi: 10.1016/j.eswa.2011.02.098.
- [40] S. M. Chen and B. D. H. Phuong, "Fuzzy Time Series Forecasting Based on Optimal Partitions of Intervals and Optimal Weighting Vectors," *Knowl- Based Syst.*, vol. 118, pp. 204-216, 2017, doi: 10.1016/j.knosys.2016.11.019.
- [41] Y. L. Huang, S. J. Horng, T. W. Kao, R. S. Run, J. L. Lai, R. J. Chen, I. H. Kuo and M. K. Khan, "An Improved Forecasting Model Based on The Weighted Fuzzy Relationship Matrix Combined with a PSO Adaptation for Enrollments," *International Journal of Innovative Computing, Information and Control*, vol. 7, no. 7a, pp. 4027-4045, 2011.
- [42] K. H. Huarng and T. H. K. Yu, "Modeling Fuzzy Time Series with Multiple Observations," *Iternational Journal of Innovative Computing, Information and Control*, vol. 8, no. 10b, pp. 7415-7426, 2012.
- [43] T. A. Jilani, S. M. A. Burney and C. Ardil, "Fuzzy Metric Approach for Fuzzy Time Series Forecasting Based on Frequency Density Based Partitioning," *International Journal of Computer and Information Engineering*, WASET, vol. 4, no. 7, pp. 1194-1199, 2010, doi: 10.5281/zenodo.1077541.
- [44] P. Saxena, K. Sharma and S. Easo, "Forecasting Enrollments Based on Fuzzy Time Series with Higher Forecast Accuracy Rate," Int. J. Computer Technology & Applications (IJACTA), vol. 3, no. 3, pp. 957-961, 2012, doi: 10.1.1.643.4986.
- [45] Q. Song and B. S. Chissom, "Fuzzy Time Series and Its Models," *Fuzzy sets and Systems*, vol. 54, no. 3, 269-277, 1993, doi: 10.1016/0165-0114(93)90372-O.
- [46] T. A. Jilani, S. M. A. Burney and C. Ardil, "Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents," *International Journal of Computer and Information Engineering*, WASET, vol. 2 no. 6, pp. 2038-2043, 2008, doi: 10.5281/zenodo.1085455.
- [47] M. G. Chung and S. K. Kim, "Efficient Jitter Compensation Using Double Exponential Smoothing," *Information Sciences*, vol. 227, pp. 83-89, 2013, doi: 10.1016/j.ins.2012.12.008.
- [48] L. Wu, S. Liu and Y. Yang, "Grey Double Exponential Smoothing Model and Its Application on Pigprice Forecasting in China," *Appl. Soft Comput.*, vol. 39, pp. 117-123, 2016, doi: 10.1016/j.asoc.2015.09.054.
- [49] D. Barrow, N. Kourentzes, R. Sandberg, and J. Niklewski, "Automatic robust estimation for exponential smoothing: Perspectives from statistics and machine learning," *Expert Syst. Appl.*, vol. 160, pp. 1-14, 2020, doi: 10.1016/j.eswa.2020.113637.
- [50] C. C. Holt, "Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages," *International Journal of Forecasting*, vol. 20, no. 1, pp. 5-10, 2004, doi: 10.1016/j.ijforecast.2003.09.015.

BIOGRAPHIES OF AUTHORS

Solikhin is currently works as Senior Lecturer in the Department of Informatics Engineering, STMIK Himsya, Semarang, Indonesia. He received her Bachelor degree (AKI University), Master degree (Diponegoro University). His experience and areas of research interest focus and scope on computer science, business intelligence, decision support system, information system.

Prediction of passenger train using fuzzy time series and percentage change methods (Solikhin)

Septia Lutfi is currently works as Senior Lecturer in the Department of Informatics Engineering, STMIK Himsya, Semarang, Indonesia. He received her Bachelor degree (AKI University), Master degree (Dian Nuswantoro University), His experience and areas of research interest focus and scope on computer science, computer engineering and informatics: software engineering, programming, data engineering.

Purnomo is currently works as Associate Professor at the Faculty of Engineering, University of Muhammadiyah Semarang, Indonesia. His qualification as below: bachelor degree (Diponegoro University), master degree (Gadjah Mada University), Dr. (Brawijaya University). His experience and areas of research interest focus and scope on mechanical engineering and technology: applied engineering, engineering science and technology, materials science and engineering.

Hardiwinoto is currently works as Senior Lecturer at the Faculty of Economics, University of Muhammadiyah Semarang, Indonesia. He received her bachelor degree, master degree, and Dr. in Diponegoro University. His experience and areas of research interest focus and scope on economics: contemporary business, economics and law.