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Abstract. A possibilistic fuzzy c-means (PFCM) algorithm is a reliable algorithm proposed to deal
with the weaknesses associated with handling noise sensitivity and coincidence clusters in fuzzy c-means
(FCM) and possibilistic c-means (PCM). However, the PFCM algorithm is only applicable to complete
data sets. Therefore, this research modified the PFCM for clustering incomplete data sets to OCSPFCM
and NPSPFCM with the performance evaluated based on three aspects, 1) accuracy percentage, 2) the
number of iterations, and 3) centroid errors. The results showed that the NPSPFCM outperforms the
OCSPFCM with missing values ranging from 5 %− 30 % for all experimental data sets. Furthermore,
both algorithms provide average accuracies between 97.75 %−78.98 % and 98.86 %−92.49 %, respectively.
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1. Introduction
Incomplete data sets are commonly found in the real
world due to failures during the collection, merging,
cleaning, and transfer of data from one source to
another [1]. The main problem faced when trying
to cluster incomplete data sets is the inability of the
existing algorithm to carry out the process. This is
because popular clustering algorithms comprises fuzzy
c-means (FCM) [2] and possibilistic c-means (PCM)
[3], which are used for complete data sets. Bezdek
and Hathaway [4] developed the FCM algorithm to
deal with the problem of clustering data sets with
missing values. They proposed whole data strategy
fuzzy c-means (WDSFCM) to deal with the problems
associated with the incomplete data set clustering by
removing features that contain missing values and
running standard FCM algorithms, thereby making
the remaining data complete. However, the WDSFCM
produces biased clustering results when the missing
values are large.

Dixon [5] proposed the partial distance strategy
(PDS) algorithm to deal with incomplete clustering
data sets by calculating a partial distance (squared
euclidean). The available data points were used to
determine the missing values with the quantity scaled
using the reciprocal of the component proportion.
Bezdek and Hathaway [4] modified the FCM using
the PDS in order to deal with the problems associated

with clustering incomplete data sets known as the
PDSFCM algorithm. The WDSFCM and PDSFCM
algorithms do not impute missing values, therefore
they are unable to ascertain the missing values after
the clustering process.

The following algorithms, proposed by Bezdek and
Hathaway [4] imputed missing values. Furthermore,
they modified the FCM algorithm using the optimal
completion strategy (OCS) and the nearest prototype
strategy (NPS), each of which is referred to as the
OCSFCM and NPSFCM algorithms. The OCSFCM
algorithm estimates missing values by considering
missing values as an additional variable and partition-
ing the data while optimizing the value of the FCM
objective function. The NPSFCM algorithm estimates
missing values using the closest prototype cluster in
each iteration step. Therefore, the difference between
the OCSFCM and the NPSFCM algorithms lies in the
technique used to update the imputation for missing
values at each iteration step.

In another research, Bezdek et al. [6] introduced
the possibilistic fuzzy c-means (PFCM) algorithm,
which corrects the shortcomings of the FCM and PCM
by overcoming noise sensitivity and the occurrence
of coincidental clusters. However, there are some
disadvantages associated with the PFCM algorithm,
it can be used only for clustering complete data sets.
In addition, some recent studies proposed clustering
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algorithms only for complete data sets, including [7–
12].

This research describes the PFCM algorithm for
clustering complete data sets in Section 2. Section 3
explains the PFCM algorithm for clustering incom-
plete data sets, while Section 4 describes the experi-
mental setup. In Section 5, the experimental results
of the real world and artificial data sets are shown
with the results analysed. Finally, Section 6 concludes
the research.

2. Possibilistic Fuzzy C-Means
(PFCM) Algorithm of
Complete Data Sets

Suppose unlabeled data sets X = {x1,x2, · · · ,xn} ⊂
Rd clustered into a fuzzy subset of c (1 < c < n) clus-
ters. Here, n and d state the number and dimension of
each data point, respectively. The X is clustered into
c by minimizing the following objective function [6].

Jm,τ (U, T,V; X) =
n∑
k=1

c∑
i=1

(αumik + βtτik)d2
ik

+
c∑
i=1

δi

n∑
k=1

(1− tik)τ .
(1)

Here, α(α > 0) denotes the importance level of
fuzzy membership degree (uik). Equation (1) is
subject to

∑c
i=1 uik = 1 constraints. Krishnapu-

ram and Keller [3] relaxed this constrain to become∑c
i=1 uik ≥ 1, therefore, it is better in reflecting clus-

ters xk to the i-th. tik denotes a possibilistic mem-
bership degree of xk to the i-th cluster and β(β > 0)
denotes the importance level of tik. d2

ik = ‖xk − vi‖2

denotes the Euclidean distance of the j-th data point
to i-th cluster centre. V = {v1,v2, · · · ,vc} denotes
the centre of the cluster set, where vi ∈ Rd and δi > 0
is the typical of possibilistic. Where m > 1 and τ > 1
are fuzzy parameter and possibilistic parameter, re-
spectively.
Basically, uik, tik, and vi are determined simulta-

neously. However, in this research, these values were
determined numerically using the recursive method.
Therefore, the initially values to be calculated are
chosen as follows: initiate vi to calculate uik and tik.

2.1. Possibilistic Fuzzy C-Means (PFCM)
Algorithm

In this section, the complete data sets are clustered
using the possibilistic fuzzy c-means (PFCM) algo-
rithm [6]. The PFCM algorithm is described as fol-
lows.

Step I: Fix m > 1, τ > 1, ε > 0 and 1 < c < n.
Pick v(0) ∈ Rd, v(0) can be chosen randomly from
X = {x1,x2, · · · ,xn} ⊂ Rd. Then at step l, l =
1, 2, · · ·

Step II: Calculate fuzzy membership degree (uik)
which minimize the objective function Jm,τ using the

following

u
(l)
ik =

 c∑
j=1

(
d2
ik

d2
jk

) 1
m−1

−1

, (2)

where d2
ik =

∥∥∥xk − v(l−1)
i

∥∥∥2
,

for 1 ≤ i ≤ c and 1 ≤ k ≤ n.
Step III: Calculate the possibilistic typical (δi),

which minimizes the objective function Jm,τ using the
following

δ
(l)
i = K

∑n
k=1

(
u

(l)
ik

)m
d2
ik∑n

k=1

(
u

(l)
ik

)m , (3)

where d2
ik =

∥∥∥xk − v(l−1)
i

∥∥∥2
.

Here K, is always chosen to be 1 [6].
Step IV: Calculate the possibilistic membership

degree (tik), which minimizes the objective function
Jm,τ using the following

t
(l)
ik =

1 +
(

β

δ
(l)
i

d2
ik

) 1
τ−1
−1

, (4)

where d2
ik =

∥∥∥xk − v(l−1)
i

∥∥∥2
,

for 1 ≤ i ≤ c and 1 ≤ k ≤ n.
Step V: Update the cluster centre (vi), which min-

imizes the objective function Jm,τ using the following

v(l)
i =

∑n
k=1

((
αu

(l)
ik

)m
+
(
βt

(l)
ik

)τ)
xk∑n

k=1

((
αu

(l)
ik

)m
+
(
βt

(l)
ik

)τ) , (5)

for 1 ≤ i ≤ c.
Step VI: Compare v(l)

i to v(l−1)
i using∥∥∥v(l)

i − v(l−1)
i

∥∥∥ < ε. If true, then stop. Other-
wise, set l = l + 1 and return to Step II.

The clustering result of the complete data sets will
be a base for evaluating the performance of the OC-
SPFCM and NPSPFCM (see Section 4).

3. Possibilistic Fuzzy C-Means
(PFCM) Algorithm of
Incomplete Data Sets

Given incomplete data sets Y = {y1,y2, · · · ,yn} ⊂
Rd and y2 = (2.35, ?, 1.32, ?, 3.44)T ∈ R5. y22 and y24
are missing values. The question is how to cluster Y?
To answer this question, we propose the OCSPFCM
and NPSPFCM for clustering incomplete data sets
such as Y. The notation used throughout this article
is as follows. Let
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yk = kth d-dimensional datapoint (data vector),
for 1 ≤ k ≤ n;

ykj = jth feature value of the kthdata point,
for 1 ≤ j ≤ d, 1 ≤ k ≤ n;

Y = {y1,y2, · · · ,yn} ⊂ Rd;
YC = {yk ∈ Y| yk is a complete data point} ;
YP ={ykj for 1 ≤ j ≤ d, 1 ≤ k ≤ n|

the value for ykj is present in Y};
YM ={ykj = ? for 1 ≤ j ≤ d, 1 ≤ k ≤ n|

the value for ykj is missing in Y}.

3.1. Optimal Completion Strategy
Possibilistic Fuzzy C-Means
(OCSPFCM) Algorithm

The explanation of the OCSPFCM algorithm is as
follows.

Step I: Fix m > 1, τ > 1, ε > 0 and 1 < c < n. Ini-
tiate Y(0)

M , for each ykj ∈ YM , with picking a random
available value in YP . Then pick v(0) ∈ Rd, v(0) can
be chosen randomly from the Y = {y1,y2, · · · ,yn} ⊂
Rd. Then at step l, l = 1, 2, · · ·

Step II: Calculate the fuzzy membership degree
(uik), which minimizes the objective function Jm,τ
using the following

u
(l)
ik =

 c∑
j=1

(
d2
ik

d2
jk

) 1
m−1

−1

, (6)

where d2
ik =

∥∥∥xk − v(l−1)
i

∥∥∥2
,

for 1 ≤ i ≤ c and 1 ≤ k ≤ n.
Step III: Calculate the possibilistic typical (δi),

which minimizes the objective function Jm,τ using the
following

δ
(l)
i =

∑n
k=1

(
u

(l)
ik

)m
d2
ik∑n

k=1

(
u

(l)
ik

)m , (7)

where d2
ik =

∥∥∥xk − v(l−1)
i

∥∥∥2
.

Step IV: Calculate the possibilistic membership
degree (tik), which minimizes the objective function
Jm,τ using the following

t
(l)
ik =

1 +
(

β

δ
(l)
i

d2
ik

) 1
τ−1
−1

, (8)

where d2
ik =

∥∥∥xk − v(l−1)
i

∥∥∥2
,

for 1 ≤ i ≤ c and 1 ≤ k ≤ n.
Step V: Update the cluster centre (vi), which min-

imizes the objective function Jm,τ using the following

v(l)
i =

∑n
k=1

((
αu

(l)
ik

)m
+
(
βt

(l)
ik

)τ)
yk∑n

k=1

((
αu

(l)
ik

)m
+
(
βt

(l)
ik

)τ) , (9)

for 1 ≤ i ≤ c.
Step VI: Compare v(l)

i to v(l−1)
i using∥∥∥v(l)

i − v(l−1)
i

∥∥∥ < ε. If true, then stop. Other-
wise, go to Step VII.

Step VII: Calculate YM , which minimizes the
objective function Jm,τ , for all ykj ∈ YM using the
following

y(l)
kj =

∑n
k=1

((
αu

(l)
ik

)m
+
(
βt

(l)
ik

)τ)
v(l)
ij∑n

k=1

((
αu

(l)
ik

)m
+
(
βt

(l)
ik

)τ) . (10)

Now, set l = l + 1 and return to Step II.
We update the missing values imputation on Step

VII using the sum of fuzzy with possibilistic member-
ship degress multiplied by the values existing on the
cluster centre as shown in Equation 10.

3.2. Nearest Prototype Strategy
Possibilistic Fuzzy C-Means
(NPSPFCM) Algorithm

The difference between the OCSPFCM and the
NPSPFCM lies in Step VII. The imputation of
the missing values was updated by the value avail-
able in the nearest cluster center. Step VII of the
NPSPFCM algorithm is defined as follows.

Step VII: Calculate Y(l)
M , which minimizes the

objective function Jm,τ , for all ykj ∈ YM using the
following

y
(l)
kj = v

(l)
ij , (11)

where d2
ik = min

{
d2

1k, d
2
2k, ..., d

2
ck

}
and d2

ck =
‖xk − vc‖2. Now, set l = l+ 1 and return to Step II.

Literature [13] presents the time complexity of the
OCS and NPS. The time complexity for the OCS and
NPS is O(nc2d), respectively, where n is the number
of data ponts, c is the number of clusters, and d is
the dimension of data points. The OCSPFCM and
NPSPFCM algorithms proposed in this research were
adapted from the OCS and NPS with the same time
complexity, namely O(nc2d).

4. Experimental Setup
This study evaluated and demonstrated the potential
of the OCSPFCM and NPSPFCM for clustering in-
complete data sets. The experiments were carried out
in the following stages. Firstly, the complete data sets
were clustered using the PFCM algorithm to obtain
the distribution of data points in the actual cluster.
The result of this stage is used as a base in evaluating
the performance of the OCSPFCM and NPSPFCM
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algorithms. In addition, the cluster validity index
was used to obtain the optimal number of clusters in
complete data sets. The cluster validity index used
is the Xie-Beni index shown in Equation (12), with
a validity index used to measure and determine the
optimal number of clusters. Furthermore, the Xie-
Beni index was used because the partition coefficient
(PC) and classification entropy (CE) indexes eliminate
the cluster centre and data in the index calculation.
Meanwhile, the cluster centre and data are two basic
attributes involved in a data clustering process based
on the fuzzy rule [14]. The optimal number of clusters
is indicated by the smallest Xie-Beni index value. Xie
and Beni [15] proposed the cluster validity index as
follows.

XB(U, V ; X) =
∑c
i=1
∑n
k=1(uik)2 ‖xk − vi‖2

n ·min
i 6=j
‖vi − vj‖2 . (12)

The performance of the OCSPFCM and NPSPFCM
algorithms is evaluated on the real-world and artifi-
cial data sets. The real-world data sets are iris [16]
and wine [17] downloaded from http://archive.ics.
uci.edu/ml [18]. Iris data sets consist of 150 data
points with 4 features, with a data size of [150×4] in
the matrix form. Wine data sets consist of 178 data
points with 13 features, with a data size of [178×13].
The artificial data sets I and II used were generated
from the Gaussian mixture distribution rule with two
clusters. The artificial data set I consist of 1000 data
points with 2 features and a size of [1000×2]. A scat-
ter plot of the artificial data set I is shown in Figure 1.
The artificial data set II consist of 1000 data points
with 14 features with a size of [1000×14]. The authors
also evaluated the performance of the OCSPFCM and
NPSPFCM on larger data sets, namely the artificial
data set III, which consist of 5000 data points with 7
features with a size of [5000×7]. The artificial data
set III consists of five clusters. The row and column
of the matrix represent the number of data points and
features, respectively.
After the clustering, the complete data sets were

made into incomplete data sets or, in other words, data
sets contain missing values. Each data set consists
of missing values with predetermined percentages of
5%, 10%, 15%, 20%, 25%, and 30%. Furthermore,
the missing values were randomly determined in the
matrix column direction of the complete the data sets.
The third stage examined the performance of the

OCSPFCM and NPSPFCM algorithms for clustering
incomplete data sets. The evaluation is based on
three aspects, the percentage accuracy, the number of
iterations, and centroid errors. The formula used to
calculate the percentage accuracy is as follows [19].

% accuracy = a

n
100% (13)

Where a is the number of data points clustered cor-
rectly and n is the total number of data points. In this

Figure 1. Artificial data set I

study, centroid errors are the magnitude of the cluster
centre error for an incomplete data set clustered us-
ing the OCSPFCM and NPSPFCM algorithms when
compared to the cluster centre of a complete data
set clustered using the PFCM. In some applications,
knowing the cluster centres is important to determine
the partitioning of data points [1]. Therefore, this re-
search evaluates the two algorithms by calculating the
centroid errors at each level of the missing values. The
Euclidean distance formula is used to calculate the
centroid errors with the centroid errors (e) averaged
using the following formula

e =
∑c
i=1 ei
c

. (14)

Where ei is the i-th centroid error and c is the number
of clusters.

5. Experimental Results and
Discussions

When carrying out the experiment, the first thing to
do is to cluster the complete data sets using the PFCM
algorithm with the Xie-Beni index as the validity
index. The result showed that the smallest Xie-Beni
index value for iris, wine, artificial data sets I, and II is
in two clusters. This is in line with Pakhira et al. [20]
using the Davies-Bouldin (DB) and the Dunns indexes
[21] as the cluster validity index. For the complete
wine data sets, the optimal number of clusters was
obtained with two clusters. This is in line with Zhang
et al. [22] using the MPC and MPA indexes [23] as
the cluster validity index. For artificial data sets I and
II, the optimal number of clusters obtained is also two
clusters. Meanwhile, for the artificial dataset III, the
optimal number of clusters obtained is five clusters.

For iris data sets, the first and second clusters con-
sist of 50 and 100 data points. For wine data sets,
the first and second clusters consist of 78 and 100
data point members. For artificial data sets I, the
first and second clusters comprise 494 and 506 data
points members, respectively. While, for artificial data
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sets II, the first and second clusters consists of 510
and 490 data points. For artificial dataset III, 972,
1081, 1016, 962, and 969 data points were members
of the first, second, third, fourth, and fifth clusters,
respectively. These results are a base to the evaluation
of the performance of the proposed OCSPFCM and
NPSPFCM. Due to fluctuating results of percentage
accuracy, the number of iterations and centroid errors
in each experiment, this deficiency was addressed by
conducting 30 experiments with each data set. The
mean of the 30 values is used for percentage accuracy,
the number of iterations, and centroid errors.
This study also compared the performance of the

OCSPFCM and NPSPFCM with three clustering al-
gorithms for the incomplete data sets, namely the
OCSFCM, NPSFCM [4], and KFCM [24]. Our com-
parison with the KFCM algorithm uses the Gaussian
kernel function with σ = 1. The sigma value (σ = 1)
used is in line with Zhang and Chen as initiators of
the KFCM algorithm [24]. Here, we use the computa-
tional condition: ε = 0.00001, maximum number of
iterations = 100, α = 1, β = 1, m = 2, and τ = 2.

5.1. Experiment on Iris Data Sets
The results of the complete iris data set clusters by
the PFCM algorithm are used as a base to evaluate
the performance of the OCSPFCM and NPSPFCM
on incomplete iris data sets.

Table 1 shows the average accuracy percentage for
iris data sets using the OCSPFCM and NPSPFCM
algorithms. For missing values below 15%, the OC-
SPFCM algorithm had the accuracy percentage above
90%. However, for missing values between 20% to
30%, the OCSPFCM algorithm had an accuracy per-
centage above 80% with a maximum of 86%. The
NPSPFCM algorithm has an accuracy percentage
above 90% for all tested missing values except for
30%, with an accuracy of 89.13%. The percentage of
accuracy shows a significant difference above 20% of
the total missing values. Table 1 also shows that the
greater the number of missing values, the lower the
accuracy percentage. Furthermore, the decrease in
the accuracy percentage is due to the updated miss-
ing values imputation, which falls far from the actual
value. Therefore, the data points that contain the
missing values become members of the inappropriate
cluster. An accuracy percentage of 80% in the case
of the OCSPFCM algorithm means that there are
130 data points out of a total of 150 members of the
appropriate cluster with a 30% missing values. In ad-
dition, there are 20 data points that are members of
the inappropriate cluster. While 89.13% of accuracy
percentage on the NPSPFCM algorithm means 134
data points are members of the appropriate cluster. In
contrast, there are 16 data points that are members
of the inappropriate cluster. From Table 1, it can
be seen that the OCSFCM has the best performance.
Our OCSPFCM outperforms the NPSFCM and our

NPSPFCM has almost the same performance as the
NPSFCM and better than KFCM.
Table 2 shows the behaviour of the OCSPFCM

and NPSPFCM that is inversely proportional to the
accuracy percentage and the number of iterations.
Furthermore, the percentage of accuracy inversely de-
creases with an increase in the number of iterations
needed. An increase in the number of missing values
led to a rise in the number of iterations. In other
words, the greater the number of missing values, the
more iterations needed for the termination. The OC-
SPFCM requires more iterations than the NPSPFCM.
Meanwhile, the OCSFCM and NPSPFCM provide
almost the same and better iteration performance
than others.The NPSPFCM has a better iteration
performance than the OCSPFCM and KFCM.
Table 3 shows the difference in centroid errors be-

tween the OCSPFCM and the NPSPFCM, which
starts to be significant at 20% missing values. The
shift of the cluster center is closely related to the
process of updating the missing values. The shift of
the clustre centre is closely related to the process of
updating the missing values. The algorithm-updated
missing values imputation falls far from the actual
value and a cluster centre error occurs. Table 3 also
shows the process of updating the missing values im-
putation by the NPSPFCM algorithm comprising of
smaller cluster centre (centroid) errors compared to
the OCSPFCM algorithm, and it outperforms the
KFCM. Conversely, the OCSFCM has smaller cen-
troid errors than the NPSPFCM and is better than
other algorithms. From Table 1, 2, and 3, it is found
that the NPSPFCM’s performance is always better
than that of the OCSPFCM and KFCM, but not
OCSFCM.

5.2. Experiment on Wine Data Sets
In the wine data sets, evaluations related to the per-
centage accuracy, number of iterations, and centroid
errors are, respectively, shown in Tables 4, 5, and 6.
Table 4 shows the accuracy percentage of the OC-

SPFCM, above 90% (5% and 10% missing values),
above 80% (15%, 20%, and 25% missing values),
and 74.72% (30% missing values). Meanwhile, the
NPSPFCM algorithm as an accuracy percentage above
90% for all levels of missing values, except for the 30%
with an accuracy of 89.89%. These algorithms pro-
duced a percentage of accuracy that decreases with
the missing value. For the OCSPFCM algorithm, the
percentage of accuracy is 74.72%, which means that
with 30% missing values, there are 133 data points
out of a total of 178 in the appropriate cluster. Con-
versely, there are 45 data points that are members
of an inappropriate cluster. For the NPSPFCM algo-
rithm, the percentage of accuracy is 89.89%, which
means that there are 160 data points out of a total
of 178 members of the appropriate cluster at the 30%
missing values level. Conversely, 18 data points are
members of an inappropriate cluster. In the wine data
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Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 96.00 98.27 99.2 98.73 96.33
10 93.33 96.44 98.8 96.87 93.00
15 90.00 93.96 95.87 94.44 91.33
20 86.00 92.44 94.33 94.27 89.12
25 82.00 90.76 93.80 91.47 86.42
30 80.00 89.13 92.27 90.80 81.00

Table 1. The average accuracy percentage for iris data sets

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 14.03 13.90 12.90 11.30 28.50
10 17.03 16.50 14.40 12.20 33.10
15 20.63 19.03 17.40 13.22 45.00
20 23.40 20.77 16.70 14.00 70.20
25 30.33 25.80 18.30 16.90 82.00
30 35.07 29.77 20.90 19.20 83.00

Table 2. The average iterations for iris data sets

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 0.014 0.002 0.002 0.002 0.0556
10 0.029 0.005 0.002 0.006 0.2201
15 0.060 0.015 0.016 0.019 0.5428
20 0.106 0.023 0.024 0.018 1.0256
25 0.185 0.031 0.023 0.040 6.9662
30 0.228 0.043 0.034 0.070 15.5065

Table 3. The average centroid errors for iris data sets

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 98.31 97.38 97.53 97.36 96.62
10 93.26 96.63 95.89 95.38 93.82
15 89.36 94.38 89.32 89.32 88.76
20 84.27 92.88 85.17 84.27 85.95
25 80.82 90.64 79.27 78.09 84.26
30 74.72 89.89 74.72 74.71 78.08

Table 4. The average accuracy percentage for wine data sets
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sets experiment, the NPSPFCM accuracy percentage
outperforms other algorithms.
Table 5 shows that the NPSPFCM algorithm pro-

vided a number of more efficient iterations than the
OCSPFCM and KFCM. However, the OCSPFCM
and NPSPFCM are no more efficient compared to the
OCSFCM and NPSFCM.
Table 6 shows the average centroid errors in wine

data sets using the OCSPFCM and NPSPFCM algo-
rithms. Furthermore, there is a larger centroid error in
the case of the OCSPFCM algorithm than in the case
of the NPSPFCM at all levels of the total missing val-
ues, except at 15%, where the NPSPFCM gives larger
centroid errors. The NPSPFCM has smaller centroid
errors than the OCSPFCM and KFM. Meanwhile, the
OCSFCM and NPSFCM have smaller centroid errors
than the other three algorithms.

5.3. Experiment on Artificial Data Sets
I

In the artificial data set I, evaluations related to the
percentage of accuracy, number of iterations, and
centroid errors are, respectively, shown in Tables 7, 8,
and 9.
Table 7 shows that the OCSPFCM below 20% of

the missing values gives an accuracy percentage above
90%. The NPSPFCM algorithm comprises of an ac-
curacy performance above 90%, with 30% missing
values. The NPSPFCM algorithm produces an accu-
racy percentage above 90%, except for 30% missing
values, which has 88.86%. This means that with 30%
missing values, there are 886 data points out of a total
of 1000 members of the appropriate cluster and 114
data points in the inappropriate cluster. While in
the case of the OCSPFCM algorithm, 84.90% means
that there are 849 data points out of a total of 1000
members of an appropriate cluster with 151 in an in-
appropriate cluster. Table 7 shows that the OCSFCM
has a better algorithm performance than others and
the NPSPFCM has a better accuracy percentage than
the OCSPFCM and KFCM, and has almost the same
performance as the NPSFCM.
Table 8 shows the average number of iterations

needed for the termination. In general, the number of
iterations required by the OCSPFCM and NPSPFCM
are relatively similar at each level of the missing val-
ues. Table 8 also shows that the NPSFCM has the
most efficient iteration, while the OCSPFCM and
NPSPFCM are more efficient than the OCSFCM and
KFCM.
Table 9 shows the average centroid errors for arti-

ficial data set I with the NPSPFCM having smaller
centroid errors than the OCSPFCM. This is the im-
plication of the process of updating the imputation of
missing values by the NPSPFCM. In other words, the
cluster centre generated by the NPSPFCM algorithm
is closer to the centre base used in the complete ar-
tificial data set I. Table 9 also shows the OCSFCM,
which has the smallest centroid errors compared to

others, and our NPSPFCM having centroid errors
smaller than the NPSFCM and KFCM.

5.4. Experiment on Artificial Data Set
II

For the artificial data set II, evaluations related to the
percentage of accuracy, the number of iterations, and
the centroid errors are, respectively, shown in Tables
10, 11, and 12.

Table 10 shows the average accuracy percentage
for the artificial data set II. The OCSPFCM and
NPSPFCM provide accuracy percentages above 95%
for all missing values percentage levels. For the 30%
missing values, the OCSPFCM and NPSPFCM give
an accuracy percentage of 95.30% and 97.57%, re-
spectively. This means that in the case of the OC-
SPFCM, there are 953 data points out of a total of
1000 members in the appropriate cluster, with 47 in
an inappropriate cluster. Meanwhile, the case of in
the NPSPFCM algorithm, there are 975 data points
in the appropriate cluster and 25 in an inappropriate
cluster. Table 10 also shows the advantages of the
OCSFCM and the performance of the NPSPFCM and
NPSFCM, which is almost the same but better than
that of the OCSPFCM and KFCM.
Table 11 shows that the NPSPFCM and OCS-

FCM have a similar number of iteration and are
more efficient than the OCSPFCM and KFCM. The
NPSPFCM also provides a higher accuracy percentage
as shown in Table 10. Furthermore, Table 12 shows
the smallest centroid errors given by our NPSPFCM
and it outperforms all others.

5.5. Experiment on Artificial Data Set
III

Experiment results on artificial data set III are shown
in Tables 13, 14, and 15, respectively.
Table 13 shows the inaccuracy of the OCSPFCM,

which is still superior to the KFCM. The accuracy per-
centage of the OCSPFCM decreased dramatically at
20% missing values and above. However, the shortcom-
ings of the OCSPFCM are covered by the NPSPFCM,
which outperforms all existing algorithms. Table 14
shows the number of the most efficient iterations pro-
vided by the NPSPFCM. Likewise, in Table 15, the
smallest centroid errors are given by our NPSPFCM.
Artificial data set III is a data set consisting of

five clusters. The experiments conducted on the iris
data sets, wine data sets, artificial data set I, and
artificial data set II, consist of two clusters each. The
comparison of the performance of the OCSPFCM and
NPSPFCM on data sets with two clusters and five
clusters is shown in Figures 2, 3, and 4 respectively.

Figure 2 shows the performance of the OCSPFCM
and NPSPFCM in terms of the accuracy percentage
on data sets with two clusters and five clusters. In
the case of the artificial data set III, which consisted
of five clusters, the OCSPFCM showed a lower perfor-
mance compared to other data sets which consisted
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Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 37.03 33.73 26.10 25.80 100
10 55.10 35.50 30.40 27.33 100
15 61.90 37.87 43.10 42.60 100
20 72.53 48.17 46.70 48.00 100
25 92.47 55.63 47.80 47.20 100
30 99.00 64.00 51.80 51.20 100

Table 5. The average iterations for wine data sets

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 11.41 9.02 3.69 2.76 467.25
10 37.11 15.48 8.85 8.75 464.77
15 46.37 73.58 13.02 13.08 478.59
20 102.34 92.75 24.07 24.79 503.25
25 153.55 98.98 28.72 28.65 658.78
30 185.21 113.36 31.37 31.60 665.07

Table 6. The average centroid errors for wine data sets

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 98.10 98.71 99.38 98.29 98.00
10 95.80 96.57 98.62 96.67 95.50
15 92.50 94.29 96.89 95.18 93.10
20 91.40 93.05 95.46 92.90 89.20
25 87.70 92.11 95.37 89.83 88.10
30 84.90 88.86 92.78 88.36 85.20

Table 7. The average accuracy percentage for artificial data set I

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 13.80 13.77 17.10 8.90 25.10
10 14.83 14.23 15.00 10.00 26.70
15 17.77 15.63 22.70 11.70 30.10
20 18.83 19.87 25.40 13.40 33.30
25 21.13 21.83 21.00 15.90 34.00
30 27.03 24.60 35.80 17.90 38.00

Table 8. The average iterations for artificial data set I

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 0.01 0.004 0.001 0.005 0.0301
10 0.08 0.015 0.003 0.015 0.1091
15 0.24 0.039 0.011 0.036 0.2484
20 0.34 0.059 0.012 0.069 0.4403
25 0.80 0.072 0.014 0.157 0.7099
30 1.43 0.124 0.035 0.182 1.0799

Table 9. The average centroid errors for artificial data set I
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Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 99.80 99.95 100 99.93 97.30
10 99.30 99.85 100 99.86 95.00
15 98.50 99.50 100 99.64 91.70
20 97.70 99.04 99.96 99.24 88.00
25 96.70 98.51 99.95 98.48 73.40
30 95.30 97.57 99.62 97.17 50.30

Table 10. The average accuracy percentage for artificial data set II

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 9.43 8.62 8.60 6.90 30.80
10 10.77 10.03 9.30 8.70 47.34
15 12.77 11.07 10.30 9.90 57.03
20 13.77 13.00 13.10 11.60 61.20
25 16.87 14.21 15.00 12.20 68.34
30 20.40 16.28 16.90 13.20 79.34

Table 11. The average iterations for artificial data set II

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 0.02 0.0002 0.0002 0.0002 0.4425
10 0.08 0.0004 0.0005 0.0004 2.9061
15 0.21 0.0008 0.0005 0.0007 13.108
20 0.40 0.0012 0.0005 0.0015 17.459
25 0.72 0.0024 0.0011 0.0031 22.806
30 1.09 0.0063 0.0014 0.0095 30.112

Table 12. The average centroid errors for artificial data set II

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 96.52 100 100 100 91.58
10 93.64 99.97 99.64 99.96 85.02
15 85.77 99.85 99.36 99.59 80.04
20 73.83 98.99 98.34 98.98 70.82
25 65.05 97.72 96.64 97.58 63.42
30 55.50 96.99 95.09 96.43 51.16

Table 13. The average accuracy percentage for artificial data set III

Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 8.64 8.00 8.60 9.40 100
10 10.82 10.00 12.80 13.20 100
15 39.10 11.00 15.00 16.20 100
20 44.00 13.20 17.40 17.40 100
25 65.34 15.00 19.40 20.00 100
30 75.00 17.60 21.30 24.80 100

Table 14. The average iterations for artificial data set III
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Missing Values OSCPFCM NPSPFCM OCSFCM NPSFCM KFCM
(%) (%) (%) (%) (%) (%)
5 0.0251 0.00006 0.00009 0.00009 0.0058
10 0.1736 0.00016 0.00013 0.00014 0.0343
15 0.1769 0.00025 0.00030 0.00025 0.0895
20 0.1934 0.00056 0.00067 0.00068 0.1142
25 0.2640 0.00095 0.00135 0.00098 0.1455
30 0.3494 0.00113 0.00120 0.00238 0.1637

Table 15. The average centroid errors for artificial data set III

Figure 2. Comparison of the percentage accuracy of data sets with two-cluster and five-cluster structure

of two clusters. In contrast, the percentage accuracy
of the NPSPFCM on artificial dataset III (five clus-
ters) outperformed other datasets consisting of two
clusters, except for artificial data set II, where the
NPSPFCM has almost the same accuracy percentage.
In general, the NPSPFCM is more reliable than the
OCSPFCM for both the data set with two clusters
and five clusters.
Figure 3 shows the performance of the number of

iterations of the OCSPFCM and NPSPFCM on data
sets with two clusters and five clusters. The OC-
SPFCM requires more iterations for data sets with
five clusters than two clusters. However, the number
of iterations needed for the wine data sets (two clus-
ters) is higher than the one for artificial data sets III
(five clusters). Meanwhile, the NPSPFCM provides
an efficient number of iterations, for both the data
sets with a two-cluster structure and the data sets
with a five-cluster structure. These results indicate
the NPSPFCM outperformed the OCSPFCM in the
number of iterations for both the two-cluster and the
five-cluster data sets.

Figure 4 shows the centroid errors of the OCSPFCM
and NPSPFCM for data sets with two clusters and
five clusters. Centroid errors for wine data sets (two
clusters) for the OCSPFCM and NPSPFCM are not
displayed because they are in the order of 102, so
it would cause the other data sets (two clusters and
five clusters) with the order of 10−2 to not be visible.
In Figure 4, we can see that the OCSPFCM has a
relatively smaller error centroid for the artificial data
set III (five clusters) than for the artificial data sets
I and II (two clusters), however, not smaller than

for the iris data sets (two clusters). Meanwhile, the
NPSPFCM has the smallest centroid errors for the
artificial dataset III (five clusters) as compared to
other data sets with a two-cluster structure.
From the experiments that have been carried out

on the aforementioned data sets, it can be concluded
that our algorithm is robust, specifically for data sets
with a two-cluster and five-cluster structure.

We also plot the objective value of our algorithm at
each iteration as shown in Figures 5 and 6. For each
data set the objective value decreases monotonically
and converges over few iterations. Subsequently, the
average running time of the OCSPFCM for the iris,
wine, artificial data sets I, II, and III are 3.58 sec-
ond, 4.17 second, 4.49 second, 4.86 second, and 13.86
second, respectively. Meanwhile, the average running
time of the NPSPFCM for the iris, wine, artificial data
sets I, II and III are 3.70 second, 4.39 second, 4.61
second, 4.79 second, and 12.87 second, respectively.
There is no significant difference in the running time
for the OCSPFCM and NPSPFCM.
The experiments carried out on the five data sets

showed that the proposed algorithms have the poten-
tial and ability to cluster incomplete data sets. The
results also showed that in the terms of the percent-
age accuracy, the NPSPFCM always outperformed
the OCSPFCM. The authors also performed compar-
isons with some existing incomplete data clustering
algorithms including the KFCM, OCSFCM, and NPS-
FCM. The result showed that in the case of iris data
sets, the OCSFCM and NPSFCM outperformed the
NPSPFCM, while in the case of wine data sets, the
NPSPFCM outperformed others. In the case of arti-
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Figure 3. Comparison of the number of iterations of data sets with two-cluster and five-cluster structure

Figure 4. Comparison of the centroid errors of data sets with two-cluster and five-cluster structure

Figure 5. The objective values of the OCSPFCM algorithm
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Figure 6. The objective values of the NPSPFCM algorithm

ficial data sets I and II, the OCSFCM outperformed
NPSPFCM, which outperformed the NPSFCM and
KFCM. In the case of artificial data sets III, contain-
ing larger data sets, the NPSPFCM outperformed all
others, thereby making it the best tool for larger in-
complete data sets. By taking the average percentage
accuracy for all experiments data sets, it was found
that the OCSPFCM and NPSPFCM provide an av-
erage accuracy between 97.75% -78.98% and 98.86%
-92.49%, respectively.

The performance of the NPSPFCM algorithm in
terms of the number of iterations for all data sets is
better than that of the OCSPFCM, except for the
artificial data set I, in this case, the OCSPFCM out-
performed the NPSPFCM. However, in general, the
number of iterations in the case of the artificial data
set I was relatively equal between the OCSPFCM and
NPSPFCM algorithms. The efficient number of itera-
tions of the NPSPFCM was due to the fact that the
missing values imputation are updated using values
available at the nearest cluster center. This acceler-
ates the convergence of cluster centres directly, or the
condition

∥∥∥v(l)
i − v(l−1)

i

∥∥∥ < ε is achieved faster by the
NPSPFCM algorithm than the OCSPFCM algorithm.
Meanwhile, in case of the OCSPFCM algorithm, the
imputation of the missing values was updated using
the sum of fuzzy and possibilistic membership degrees,
which is multiplied by available values in the cluster
centre. Therefore, it causes the slower convergence of
the OCSPFCM.
Finally, the performance of the OCSPFCM and

NPSPFCM algorithms was evaluated on centroid er-

rors in each data set. The results showed that the
centroid errors of the NPSPFCM algorithm for all
data sets are smaller than that of the OCSPFCM algo-
rithm. The smaller centroid errors of the NPSPFCM
algorithm can be attributed to its ability to produce
cluster centres for incomplete data sets with a loca-
tion that is not far from cluster centres of the base
data sets. This is the implication of the process of
updating the imputation of the missing values, where
the NPSPFCM algorithm produces values close to the
actual value.

6. Conclusions
In conclusion, this study analysed the potential and
performance modification of the PFCM algorithm
for clustering incomplete data sets. These modifica-
tions, which emerge from the PFCM, as OCSPFCM
and NPSPFCM are associated with incomplete data
sets clustering. Therefore, this research is divided
into three stages. In the first stage, a clustering of
complete data sets was carried out using the PFCM
algorithm. The cluster results obtained at this stage
are the base for evaluating the performance of the
OSCPFCM and NPSPFCM algorithms. Furthermore,
the performance of the OCSPFCM and NPSPFCM
was analysed based on three parameters, accuracy per-
centage, the number of iterations, and centroid errors.
In the second stage, the complete data sets were made
incomplete with missing values at predetermined per-
centages. In the third stage, the incomplete data sets
were clustered using the OCSPFCM and NPSPFCM.
The results showed that both algorithms have the
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potential to cluster incomplete data sets. However,
the NPSPFCM outperforms the OCSPFCM based on
the three evaluated processes. The NPSPFCM outper-
forms the OCSPFCM with the missing values ranging
from 5%-30% for all experimental data sets. Therefore,
this research recommends the use of the NPSPFCM
for clustering incomplete data sets. Furthermore, the
modification of the PFCM proposed in this research
has enriched the reference of the incomplete data set
clustering algorithm.
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List of symbols
Rd Space of real d-vectors
xk Data vector (data point)
vi Cluster centre
dik uclidean distance between xk and vi

uik Fuzzy membership degree
tik Possibilistic membership degree
α Importance level of uik

β Importance level of tik

δi Possibilistic typicality
m Fuzzy parameter
τ Possibilistic parameter
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