VEBRIANA, EKA, B2A018035 (2022) PEMODELAN SPASIAL BAYESIAN MODEL AVERAGING PADA ANGKA PUTUS SEKOLAH JENJANG SEKOLAH DASAR DI PROVINSI SUMATRA UTARA. Sarjana / Sarjana Terapan (S1/D4) thesis, Universitas Muhammadiyah Semarang.
|
Text
HALAMAN DEPAN.pdf Download (998kB) | Preview |
|
|
Text
Abstrak.pdf Download (551kB) | Preview |
|
|
Text
BAB I.pdf Download (1MB) | Preview |
|
|
Text
BAB II.pdf Download (663kB) | Preview |
|
Text
BAB III.pdf Restricted to Repository staff only Download (612kB) | Request a copy |
||
Text
BAB IV.pdf Restricted to Repository staff only Download (874kB) | Request a copy |
||
|
Text
BAB V.pdf Download (550kB) | Preview |
|
|
Text
DAFTAR PUSTAKA.pdf Download (501kB) | Preview |
|
Text
LAMPIRAN.pdf Restricted to Repository staff only Download (1MB) | Request a copy |
Abstract
ABSTRAK Eka Vebriana, 2022, Pemodelan Spasial Bayesian Model Averaging Pada Angka Putus Sekolah Jenjang Sekolah Dasar di Provinsi Sumatra Utara. Skripsi, Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Muhammadiyah Semarang. Provinsi Sumatra Utara dengan Angka Putus Sekolah (APTS) di tingkat SD tertinggi ke 1 dari seluruh provinsi di Indonesia menjadi perhatian khusus, kasus tersebut membuktikan kegagalan dalam program pemerintah “Wajib Pendidikan Dasar”. Pada penelitian ini digunakan Spasial Bayesian Model Averaging (BMA) untuk mengetahui faktor-faktor yang signifikan berpengaruh pada APTS dengan adanya aspek geografis sehingga lag spasial ikut diperhitungkan. Tujuan penelitian ini untuk memodelkan APTS dengan model Spasial BMA. Pembobot spasial yang digunakan dalam penelitian ini adalah matriks persinggungan Queen Continguity dan K-Nearest Neighbour. Pemodelan Spasial BMA menghasilkan faktor-faktor yang berpengaruh terhadap APTS adalah jumlah desa/kelurahan yang memiliki fasilitas sekolah (X3), angka buta huruf (X4), dan jumlah kepadatan penduduk (X6). Terdapat ketergantungan spasial pada data yang mengidentifikasikan ada kemiripan sifat untuk lokasi yang berdekatan. Kata kunci : APTS, Lag Spasial, Spasial Bayesian Model Averaging. ABSTRACT Eka Vebriana, 2022, Spatial Bayesian Model Averaging Models on Dropout Rates at Elementary Schools in North Sumatra Province. Undergraduate thesis, Statistical Study Program, Faculty of Mathematics and Natural Sciences, University of Muhammadiyah Semarang. North Sumatra Province with the 1st highest dropout rates at elementary school level of all provinces in Indonesia is of particular concern. The case proves a failure in the government's “Compulsory Basic Education” program. In this study, Spatial Bayesian Model Averaging (BMA) can be used to determine the factors that significantly affect to APTS because of geographical aspects so that spatial lag was taken into account. The purpose of the study was to model APTS with Spatial BMA. The spatial weighting used in this study is Queen Continguity and K-Nearest Neighbour. BMA Spatial Modeling produces factors that influence the APTS, namely the number of villages that have school facilities (X3), the illiteracy rate (X4), and the total population density (X6). There is a spatial dependence on the data which indicates that there are similar properties for adjacent locations. Keywords: APTS, Spatial Bayesian Model Averaging, Spatial Lag.
Item Type: | Thesis (Sarjana / Sarjana Terapan (S1/D4) ) |
---|---|
Call Number: | 004/Statistika/VII/2022 |
Subjects: | L Education > Statistics |
Divisions: | Faculty of Agricultural Science and Technology > S1 Statistics |
Depositing User: | perpus unimus |
Date Deposited: | 09 Aug 2022 02:06 |
Last Modified: | 09 Aug 2022 02:06 |
URI: | http://repository.unimus.ac.id/id/eprint/5748 |
Actions (login required)
View Item |