PAPER • OPEN ACCESS

In-silico Specificity Comparison between GMF-GMR and JMF-JMR Primers for Detecting *moaC* Genes of Food Spoilage Bacteria *Pseudomonas* spp

To cite this article: S N Ethica et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 292 012033

View the article online for updates and enhancements.

You may also like

- <u>A cold and diffuse giant molecular filament</u> <u>in the region of $I = 41^{\circ}$, $b = 1^{\circ}$ </u> Liang-Hao Lin, , Hong-Chi Wang et al.
- THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG E. Schinnerer, M. T. Sargent, M. Bondi et al.
- <u>Physical Properties of Large-scale</u> <u>Galactic Filaments</u> Catherine Zucker, Cara Battersby and Alyssa Goodman

ECS Toyota Young Investigator Fellowship

(ECS) ΤΟΥΟΤΑ

For young professionals and scholars pursuing research in batteries, fuel cells and hydrogen, and future sustainable technologies.

At least one \$50,000 fellowship is available annually. More than \$1.4 million awarded since 2015!

Application deadline: January 31, 2023

Learn more. Apply today!

This content was downloaded from IP address 103.97.100.190 on 28/12/2022 at 09:04

IOP Conf. Series: Earth and Environmental Science **292** (2019) 012033 doi:10.1088/1755-1315/292/1/012033

In-silico Specificity Comparison between GMF-GMR and JMF-JMR Primers for Detecting moaC Genes of Food Spoilage Bacteria Pseudomonas spp.

S N Ethica^{1,2}, A R Sulistyaningtyas¹, S Darmawati¹

¹Faculty of Nursing and Health Sciences, Universitas Muhammadiyah Semarang, Jalan Kedungundu Semarang 18, Semarang, Indonesia, 55273

²Indonesia Forestry Institute (IFI) or Yayasan Kehutanan Indonesia (YKI), Kalibata, Jakarta, Indonesia, 12750

Corresponding author: norma@unimus.ac.id

Abstract. Pseudomonas spp. have been known as notorious food spoilage bacteria with ability to produce thermo-tolerant enzymes. They pose serious risk to public health as its most pathogenic member, P. aeruginosa, could cause nosocomial infections affecting peoplewith immunodeficiency. The use of GMF-GMR primers had been reported capable for detecting bacterial moaC of Alcaligenes javaensis JG3. The gene is suspected to be related with dormancy of pathogenic bacteria. This study aimed to investigate specificity of the GMR-GMF well as a newly designed JMF-JMR pairs of primers as (JMF: 5'-GGCGTACATCATCCACACTG-3' and JMR: 5'-GGCGTTGACCATCTATGACA-3') for detecting moaC genes of 57 members of Pseudomonas spp. retrieved from http://insilico.ehu.eus/ database using in silico PCR (Polymerase Chain Reaction). The results showed that GMF-GMR primers could selectively amplify 271-bp in silico PCR products from 14 out of 57 members of Pseudomonas spp. tested. However, BLASTn analysis on these 14 amplified DNA sequences showed that they were not part of moaC, yet glpK gene fragment sequences. Meanwhile, the newly designed primers from moaC sequence of strain JG3, JMF-JMR, could specifically amplify 214-bp in silico PCR products from 2 out of 57 members of Pseudomonas spp. matched to bacterial moaC gene fragment sequences. As conclusion, based on in silico study JMF-JMR primers are more specific than GMF-GMR ones for detecting moaC gene fragments of members of Pseudomonas spp. studied.

1. Introduction

Food spoilage by *Pseudomonas* spp. in particular food groups such as fish, meat, milk and dairy products, water, fruit, and vegetables. Despite the fact that *Pseudomonas* spp. do not cause serious risk to public health, most pathogenic *Pseudomonas aeruginosa* belongs to risk group II. It is categorized as opportunistic pathogen, which causes nosocomial infections in hospitals affecting immunocompromised persons [1].

Characterization of moaC of food-borne bacterium Alcaligenes sp. JG3, later known as Alacligenes javaensis JG3 using degenerate GMF-GMR primers had been reported. Previous result showed that strain JG3 has analogous moaC gene sequence, which is responsible for the synthesis of

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

International Conference on Food Science & Technology	IOP Publishing
IOP Conf. Series: Earth and Environmental Science 292 (2019) 012033	doi:10.1088/1755-1315/292/1/012033

MoaC (molybdenum cofactor biosynthesis protein C) of MoaC superfamily involved in molybdenum cofactor (MoCo) biosynthesis similar to that belongs to *Pseudomonas stutzeri* LMG 11199 [2,3]. It is therefore interesting to reveal possible relationship between *moaC* with *Pseudomonads*.

The term *in silico* was coined at the end of the 1980s, to refer to "virtual" experiments existing only "inside" computers. It complements the terms in vivo and in vitro, characterizing experiments that are accomplished, respectively, within a living [4]. In genomic studies, in silico PCR is aimed to calculate theoretical PCR results by using up-to-date sequenced bacterial genomes, a technique which allows amplification of specific DNA sequences [4,5]. In silico or virtual PCR could be used to predict or to calculate theoretical ability of pairs of primers to amplify targeted gene fragments by using up-to-date sequenced bacterial genomes stored in a database. It is a technique, which allows amplification of specific DNA sequences supporting successful DNA amplification using in vivo PCR [5-8]. Today, various web tools for in silico PCR including virtual oligonucleotide assembly and analysis have been well-developed. Currently, in silico approach is capable to reveal potential PCR biases in the use of DNA barcode. For example, it divulges such biases in the use of internal transcribed spacer (ITS) of nuclear DNA, which has been used as an environmental DNA barcode for fungi for 15 years. In silico analysis has been use to investigate virulence genes in an emerging dental pathogen A. baumannii and related species. In addition, successful determination of a real-time PCR (Q-PCR) based in silico amplification of signature genes for quantification of various bacteria causing sepsis has also been reported [9-11].

Biochemical and molecular methods aiming to detect and confirm the presence of *Pseudomonas* spp. had been studied. However, none of these studies targeting the *moaC* gene sequence of *Pseudomonas* group, while previous report had inferred the link between *moaC* with the food-spoilage agent [2]. This study compared the specificity detection between GMF-GMR and JMF-JMR primers in detecting *moaC* genes of food-spoilage bacterial group of *Pseudomonas* spp. by *in silico* PCR method.

2. Methods

2.1. GMF-GMR primer preparation

GMF-GMR primers were obtained from previous publication [2]. The primers were reported to be able to amplify *moaC* gene fragment of *Alcaligenes javaensis* JG3 using conventional PCR method.

2.2. JMF-JMR Primer design

A pair of gene specific primers were designed using Primer3Plus web-based tool, which was freely available from <u>http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi</u> [11]. A DNA template used to design the primers was a *moaC* gene fragment of *Alcaligenes javaensis* JG3 previously reported [2,3]. The sequence was accessed through Genbank accession code of AB894422.1 available from NCBI (National Center for Biotechnology Information) website<u>https://www.ncbi.nlm.nih.gov/nuccore/AB894422.1?report=fasta</u>. *2.2.1. In silico PCR*

An amplification was performed using in silico PCR amplification software freely available from <u>http://insilico.ehu.es/PCR/</u> (ver. 2010, released by CONSOLIDER-INGENIO, Spain) using GMF-GMR and JMF-JMR primers [6,8]. As many as 57 genomic DNA sequences of members of *Pseudomonas* spp. retrieved from in silico database were used as virtual templates. The genomic sequences of members of *Pseudomonas* spp. encompass notable species from genus *Pseudomonas* such as *P. brassicacearum*, *P. denitrificans*, *P. entomophila*, *P. fluorescens*, *P. fulva*, *P. mendocina*, *P. monteilii*, *P. pose*, *P. protegens*, *P. resinovorans*, *P. aeruginosa*, and *P. syringae*. Separately, both pair of primers were used to amplify the set bacterial genomic DNA sequences. The parameters set included: Exclude plasmid (unchecked), option "allow 1-2 mismatches, but in nucleotides in 3' end", International Conference on Food Science & TechnologyIOP PublishingIOP Conf. Series: Earth and Environmental Science 292 (2019) 012033doi:10.1088/1755-1315/292/1/012033

and maximum length of band 3000 nucleotides. The amplified products from amplification using both pairs of primers were then analysed using BLASTn from NCBI website [12], and the results were compared based on specificity of products.

3. Results and Discussion

Sequence of moaC previously reported [2] as seen in Figure 1 was retrieved using GenBank accession number: AB894422.1

```
Article I. Alcaligenes sp. JG3 DNA, moaC gene fragment
GenBank: AB894422.1
>AB894422.1 Alcaligenes sp. JG3 DNA, moaC gene fragment
TGGGCAGTTCGGCAGCTACCTGATTGCGCGCGCACATCAGATTCTGCTCGCCGAGTACCTCCCAGACGCC
ACCGCGCGCCAGGAGGTACTGGCGTACATCATCCACATGCCGAACGATTCATCCCATTGGATGCGCTG
CCATCGCTGCCTAGGGTTTCCCGATAACGGGCAAAGAACTGAATCGAAATCATGCCTGCACCTGCCAATG
CCCACTCTTGCCGCCCAGCTTCTCCAGCAGGCGCACCCCTTCCATCACCATGCCGCGGTCAACGGCCTG
CACATGTCATAGATGGTCAACGCCGCGACGCTGGCAGCGGTCAACGGCCTGC
CCCCCCAGCTTGCAGGCCGCGGGGATCAATACGCTGTCGTCACCATCGGCCTGGATCCTCCAGCCGGCCCGGGGATCAATACGCTGTCGTCACCATCGGCCTGGATCCTCGACCATGTCA
C
```

Figure1. DNA sequence of moaC gene fragment of *A. javaensis* JG3 under (Genbank acc. Code AB894422.1) [Ethica *et al.*, 2018].

From the *moaC* sequence (Figure 1), a new pair of primers were designed, JMF: 5'-GGCGTACATCATCCACACTG-3' and JMR: 5'-GGCGTTGACCATCTATGACA-3' could be designed using Primer3Plus web tool (Figure 2).

Pair 1:						
Left Primer 1:	AB894422.1 A	B894422.1 Alcaligene	es sp. JG3 DNA, m			
Sequence:	GGCGTACA	TCATCCACACTG				
Start: 91	Length: 2	0 bp Tm:	60.0 °C	GC: 55.0 %	ANY: 4.0	SELF: 3.0
Right Primer 1:	AB894422.1	AB894422.1 Alcalige	nes sp. JG3 DNA, m			
Sequence:	GGCGTTGA	CCATCTATGACA				
Start: 304	Length: 2	20 bp Tm:	59.5 °C	GC: 50.0 %	ANY: 4.0	SELF: 3.0
Product Size: 214 bp	,	Pair A	ny: 4.0	Pair End: 2.0		
Send to Primer3Manager	Reset Form	1				
1 TGG	GCAGTTC	GGCAGCTACC	TGATTGCGCG	GCACATCAG	ATTCTGCTCG	
51 CCG	AGTACCT	CCCAGACGCC	ACCGCGCGCC	AGGAGGTACT	GGCGTACATC	
101 ATC	CACACTG	CCGAACGATT	CATCCCATTO	GATGCGCTCG	CCATCGCTGC	
151 CTA	GGGTTTC	CCGATAACGG	GCAAAGAACI	GAATCGAAAT	CATGCCTGCA	
201 CC1	GCCAATG	CCCACTCTTG	CCGCCCAGCI	TCTCCAGCAG	GCGCACCCCT	
251 TCG	ATCACCA	TGCCGCGGTC	AACGGCCTTG	CACA <mark>TGTCAT</mark>	AGATGGTCAA	
301 <mark>CGC</mark>	CGCGACG	CTGGCAGCGG	TCAGCGCTTC	CATTTCCACG	CCCGTCTGCC	
351 CCG	CCAGCTT	GCAGGCCGCG	GGGATCAATA	CGCTGTCGTC	ACCATCGGCC	
401 TGG	ATCCTCG	ACCATGTACA	G			

Figure 2. Newly designed primers, JMF (*forward*) and JMF (reverse) primers obtained from Primer3Plus primer design tool based on moaC sequence of *A. javaensis* JG3 (blue- and yellow- highlighted).

These newly designed pair of primers, along with the available GMF-GMR primers were used to amplify targeted sequence with 57 genome sequences of *Pseudomonas* spp. (**Table 1**) as templates.

IOP Conf. Series: Earth and Environmental Science **292** (2019) 012033 doi:10.1088/1755-1315/292/1/012033

Table 1. Genome sequences of 57 members of *Pseudomonas* spp. available from database used as templates of *in silico* PCR to evaluate specificity of GMF-GMR and newly designed JMF-JMR of primers for detection of *moaC*.

No.	NCBI Reference Sequence	Genome of Species	Author
1	NC_002516.2	P. aeruginosa	Winsor et al., 2018
2	CP004061.1)	P. aeruginosa B136-33	Lo et al., 2017
3	NC 018080.1	P. aeruginosa DK2	Rau et al., 2017
4	NC_002516.2	P. aeruginosa LES431	Jeukens et al., 2017
5	NC_011770.1	P. aeruginosa LESB58	Winstanley et al., 2017
6	NC_017548.1	P. aeruginosa M18	Wu et al., 2017
7	NC ^{023019.1}	P. aeruginosa MTB-1	Ohtsubo et al., 2017
8	AP012280.1	P. aeruginosa NCGM2.S1	Miyoshi-Akiyama et al., 2017
9	NC 022808.2	P. aeruginosa PA1	Lu et al., 2017
10	NC ^{022806.1}	P. aeruginosa PA1R	Le et al., 2017
11	NC_009656.1	P. aeruginosa PA7	Roy et al., 2018
12	NC_022594.1	P. aeruginosa PAO1-VE13	Yin et al., 2017
13	NC 022591.1	P. aeruginosa PAO1-VE2	Yin et al., 2017
14	NC 022361.1	P. aeruginosa PAO581	Yin et al., 2017
15	NC 021577.1	P. aeruginosa RP73	Jeukens et al., 2017
16	NC 023149.1	P. aeruginosa SCV20265	Eckweiler <i>et al.</i> , 2017
17	NC 008463.1	<i>P. aeruginosa</i> UCBPP-PA14	Lee et al., 2017
18	NC 022360.1	<i>P. aeruginosa</i> c7447m	Yin <i>et al.</i> , 2017
19	NC 015379.1	<i>P. brassicacearum</i> NFM421	Ortet <i>et al.</i> , 2017
20	CP004143.1	<i>P. denitrificans</i> ATCC 13867	Ainala <i>et al.</i> , 2014
20	NC 008027.1	<i>P. entomophila</i> L48	Vodovar <i>et al.</i> , 2018
21	NC 017911.1	P. fluorescens A506	Loper <i>et al.</i> , 2018
23	NC 016830.1	P. fluorescens F113	Redondo-Nieto <i>et al.</i> , 2017
23 24	NC 004129.6	P. fluorescens Pf-5	Paulsen <i>et al.</i> , 2017
25	NC 007492.2	P. fluorescens Pf0-1	Silby <i>et al.</i> , 2017
26	NC 012660.1	P. fluorescens SBW25	Silby <i>et al.</i> , 2017
27	CP002727.1	P. fulva 12-X	Lucas <i>et al.</i> , 2011
28	CP002620.1	<i>P. mendocina</i> NK-01	Guo <i>et al.</i> , 2014
29	NC 009439.1	<i>P. mendocina ymp</i>	Copeland <i>et al.</i> , 2017
30	NC 023075.1	P. monteilii SB3078	Dueholm <i>et al.</i> , 2017
31	NC 023076.1	<i>P. monteilii</i> SB3101	Dueholm <i>et al.</i> , 2017
32	NC 020209.1	<i>P. poae</i> RE*1-1-14	Mueller <i>et al.</i> , 2017
33	CP003190.1	P. protegens CHA0	Schuldes <i>et al.</i> , 2014
34	CP002290.1	P. putida BIRD-1	Matilla <i>et al.</i> , 2014
35	CP003734.1	<i>P. putida</i> DOT-T1E	Matilla <i>et al.</i> , 2014
36	CP000712.1	P. putida F1	Copeland <i>et al.</i> , 2017
37	CP000926.1	P. putida GB1	Copeland <i>et al.</i> , 2017
38	CP005976.1	P. putida H8234	Molina <i>et al.</i> , 2014
39	CP003738	<i>P. putida</i> H83267	Molina <i>et al.</i> , 2015
40	NC 002947.4	<i>P. putida</i> KT2440	Belda <i>et al.</i> , 2016
41	NC 021505.1	<i>P. putida</i> NBRC 14164	Ohji <i>et al.</i> , 2018
42	NC 017986.1	P. putida ND6	Li et al., 2018
43	NC 015733.1	P. putida S16	Yu et al., 2017
44	EU514690.1	P. putida UW4	Cheng <i>et al.</i> , 2010
45	NC 010501.1	P. putida W619	Copeland <i>et al.</i> , 2017
46	AP013068.1	P. resinovorans NBRC 106553	Shintani et al., 2016
47	NC 023064.1	Pseudomonas sp. TKP	Ohtsubo et al., 2017
48	NC_022738.1	Pseudomonas sp. VLB120	Volmer et al., 2017
49	NC_009434.1	P. stutzeri A1501	Yan et al., 2017
50	CP002881.1	P. stutzeri LMG 11199	Chen et al., 2016
51	NC 018028.1	P. stutzeri CCUG 29243	Brunet-Galmes et al., 2017
52	CP003725.1	P. stutzeri DSM 10701	Busquets et al., 2015
53	CP002622.1	P. stutzeri DSM 4166	Yu et al., 2015
54	CP003071.1	P. stutzeri RCH2	Lucas et al., 2013
55	JPQU01000039.1	P. syringae	Baltrus et al., 2014
56	CP000058.1	P. syringae pv. phaseolicola 1448A	Joardar et al., 2017
30	0100000000		

All parameters set on *in silico* PCR using JMF-JMR primers could be seen in Figure 3.

		Input	primers in fasta forma
Primer 1 ¹	5'-	GGCGTTGACCATCTATGACA	-3' <u>C</u>
Primer 2 ¹	5'-	GGCGTTGACCATCTATGACA	-3' <u>C</u>
Allow 1	o n	nismatches, but in 🔟 💿 nu	cleotides in 3' end
Maximum	len	gth of bands	
Maximum 3000		g th of bands ucleotides	

Figure 3. In silico PCR using newly designed primers, JMF (*forward*) and JMF (reverse) primers obtained from Primer3Plus primer design tool based on *moaC* sequence of *A*. *javaensis* JG3.

		1	2	3	4	5	6	7	8	9	10	11	15	16	17
100 bp DNA ladder	ĕ														
2000	=														
1500															
1000	\equiv														
800	\equiv														
900	\equiv														
400	—														
	_				_	_	_	_						_	_
200	—														
100	_														

Figure 4. Products of *in silico* PCR amplification using a pair of GMF-GMR primers with genomic DNA sequences of 57 members *Pseudomonas* spp. as template, which were retrieved from *in silico* database (http://insilico.ehu.es/) (Bikandi, 2004). Single bands of 271-bp DNA matched to *glpK* gene fragments were obtained from 14 members of *Pseudomonas* spp., which consists of *Pseudomonas aeruginosa* strains represented by lanes: 1. *P. aeruginosa* sp., 2. *P. aeruginosa* B136-33, 3. *P. aeruginosa* DK2 4. *P. aeruginosa* LES431 5. *P. aeruginosa* LESB58 6. *P. aeruginosa* M18 7. *P. aeruginosa* MTB-1 8. *P. aeruginosa* NCGM2.S19. *P. aeruginosa* PA110. *P. aeruginosa* PA1R11. *P.*

aeruginosa PA7 15. P. aeruginosa RP73 16. P. aeruginosa SCV20265 17. P. aeruginosa UCBPP-PA14.

Meanwhile, results of *in silico* PCR using both GMR-GMF as well as JMF-JMR pairs of primers are shown in **Figure 4** and **Figure 5**, respectively. As seen in **Figure 4**, the amplified virtual PCR products are single bands sized ~271 bp. These results showed that GMF-GMR primers could selectively amplify ~271-bp *in silico* PCR products from 14 out of 57 genomes of members of *Pseudomonas* spp. tested. However, BLASTn analysis on these 14 amplified DNA sequences showed that all of them were not part of *moaC*, yet *glpK* gene fragment sequences. These results were not in line with conventional PCR using similar primers GMR-GMF with genomic DNA of *Alcaligenes javaensis* JG3 as template. As previously reported, DNA sequence of PCR product obtained from conventional PCR using GMF and GMR on DNA genome of strain JG3 resulted moaC gene fragment with assigned Genbank accession code of AB894422.1 [2]. Instead, the obtained *moaC* sequence, was then used to design new primers JMF-JMR reported in this study.

Meanwhile, the newly designed primers from *moaC* sequence of strain JG3, JMF-JMR, could specifically amplify 214-bp *in silico PCR* products from 2 out of 57 members of *Pseudomonas* spp. DNA sequences of these PCR products were matched to *moaC* gene fragment sequences belong to two strains of *P. stutzeri* species. Results of *in silico PCR* using JMF-JMR primers with 57 genome sequences of *Pseudomonas* spp. are shown in **Figure 5**.

	49 53
100 bp DNA laddi	or
2000	=
1500	
1000	\equiv
800	Ξ
600	_
400	—
200	
100	

Figure 5. Products of *in silico* PCR amplification using a pair of GMF-GMR primers with genomic DNA sequences of 57 members *Pseudomonas* spp. as template, which were retrieved from *in silico* database (<u>http://insilico.ehu.es/</u>). Single bands of 214-bp DNA matched to *moaC* gene fragments were obtained from 2 members of *Pseudomonas* spp., which consists of *Pseudomonas* stutzeri strains represented by lanes: 49. *P. stutzeri* A1501 and 53. *P. stutzeri* DSM 4166.

As seen in **Figure 5**, lanes number 49 and 53 showed single bands sized ~214 bp. These lanes belong to *P. stutzeri* A1501 and *P. stutzeri* DSM 4166 genomic sequences, respectively. BLASTn analysis on these PCR products showed that both DNA sequences shared 100% similarity with *moaC* gene fragments of *P. stutzeri* A1501 (Figure 6) and *P. stutzeri* DSM 4166 (Figure 7), also with similar gene of *Alcaligenes javaensis* JG3 [3].

Conserved domains of both predicted protein sequences displayed in **Figure 6** and **Figure 7** have been reported in NCBI as cyclic pyranopterin monophosphate synthase (MoaC, Molybdenum Cofactor Biosynthesis Protein C). Based on information from protein data bank (PDB), MoaC is a

member of the MoaC superfamily cl00242, which hypothetical structure is displayed in **Figure 8**. Members of cl00242 superfamily are involved in molybdenum cofactor (Moco) biosynthesis, an essential cofactor of a diverse group of redox enzymes. MoaC, a small hexameric protein, converts, together with MoaA, a guanosine derivative to the precursor Z by inserting the carbon-8 of the purine between the 2' and 3' ribose carbon atoms initiating three phases of Moco biosynthesis [14-16].

Pseudomonas stutzeri A1501

```
>NC_009434, from 1284772 to 1284985 (214 bp); Pseudomonas stutzeri
A1501
GGCGTTGACCATCTATGACATGTGCAAGGCCGTTGACCGCGGCATGGTGATCGAAGGGGTGCGCCTGC
TGGAGAAGCTGGGCGGCAAGAGTGGGGCATTGGCAGGGTGCAGGCATGATTTCGATTCAGTTCTTTGCCC
GTTATCGGGAAACCCTAGGCAGCGATGGCGAGCGCATCCAATGGGATGAATCGTTCGGCAGTGTGGAT
GATGTACGCC
Identical protein: Cyclic pyranopterin monophosphate synthase MoaC
[Pseudomonas stutzeri] NCBI Reference Sequence: WP_011912355.1
>WP_011912355.1 cyclic pyranopterin monophosphate synthase MoaC
[Pseudomonas stutzeri]
MLTHLDSLGRASMVDVTDKAVTAREAVAEARVRMLPQTLQLIQQGGHPKGDVFAVARIAGIQAAKKTH
ELIPLCHPLLLTSIKVELQADGEDSVLIRAVCKLAGQTGVEMEALTAASVAALTIYDMCKAVDRGMVI
EGVRLLEKLGGKSGHWQVQA
```

Figure 6. Predicted amplified DNA sequence on *Pseudomonas* spp. genome (lane 49) using JMF-JMR primers converted to protein sequence, which shared highest similarity with *moaC* of *Pseudomonas stutzeri* A1501.

Pseudomonas stutzeri DSM 4166

```
>NC_017532 from 1219396 to 1219609 (214 bp); Pseudomonas stutzeri
DSM 4166
GGCGTTGACCATCTATGACATGTGCAAGGCCGTTGACCGCGGCATGGTGATCGAAGGGGTGCGCCTGC
TGGAGAAGCTGGGCGGCAAGAGTGGGCATTGGCAGGGTGCAGGCATGATTTCGATTCAGTTCTTTGCCC
GTTATCGGGAAACCCTAGGCAGCGATGGCGAGCGCATCCAATGGGATGAATCGTTCGGCAGTGTGGAT
GATGTACGCC
Identical protein: Cyclic pyranopterin monophosphate synthase MoaC
[Pseudomonas stutzeri] NCBI Reference Sequence: WP_014596023.1
>WP_014596023.1 cyclic pyranopterin monophosphate synthase MoaC
[Pseudomonas stutzeri]
MLTHLDSQGRASMVDVTDKAVTAREAVAEARVRMLPQTLQLIQQGGHPKGDVFAVARIAGIQAAKKTH
ELIPLCHPLLLTSIKVELQADGEDSVLIRAVCKLAGQTGVEMEALTAASVAALTIYDMCKAVDRGMVI
EGVRLLEKLGGKSGHWQVQA
```

Figure 7. Predicted amplified DNA sequence on *Pseudomonas* spp. genome (lane 53) using JMF-JMR primers converted to protein sequence, which shared highest similarity with *moaC* of *Pseudomonas stutzeri* DSM 4166

Figure 8. Hypothetic structure of MoaC cI00242 superfamily which members include MoaC and MoaA proteins (Source: Protein Data Bank, PDB).

International Conference on Food Science & TechnologyIOP PublishingIOP Conf. Series: Earth and Environmental Science 292 (2019) 012033doi:10.1088/1755-1315/292/1/012033

Boutros and Okey reported that the information in a primer pair is combined by an *in-silico* PCR to identify potential amplicons by both identity and size [17]. *In silico* PCR results allow the user to accept or reject potential primer pairs for experimental use. Based on this, the newly designed pair of primers JMF-JMR obtained in this study were theoretically accepted and were potential to proceed for *in vitro* PCR use to detect *moaC* of *P. stutzeri* from *Pseudomonas* spp. JMF-JMR showed theoretically potential uses to detect the occurrence of *P. stutzeri* contamination on foods based on its *moaC* genes amplified by these primers.

4. Conclusion

Based on *in silico* study, JMF-JMR primers are more specific than GMF-GMR ones for detecting *moaC* genes fragment of 57 members of *Pseudomonas* spp. studied, which include strains of species *P. brassicacearum*, *P. denitrificans*, *P. entomophila*, *P. fluorescens*, *P. fulva*, *P. mendocina*, *P. monteilii*, *P. pose*, *P. protegens*, *P. resinovorans*, and *P. syringae*. As conclusion, based on *in silico* study, JMF-JMR primers are more specific than GMF-GMR ones for detecting *moaC* genes fragment of members of *Pseudomonas* spp. studied.

5. Author Contribution Statement

Dr. SNE contributed in preparing and analyzing all research data reported. ARS contributed in preparing manuscript and summarizing research data, Dr. SD contributed in final editing the manuscript.

References

- [1] Raposo, A., Pérez, E., de Faria, C. T., Ferrús, M. A., & Carrascosa, C. (2016). Food Spoilage by Pseudomonas spp.—An Overview. *Food Borne Pathogens and Antibiotic Resistance*, 241.
- [2] Ethica, S. N., Semiarti, E., Widada, J., Oedjijono, O., & Joko Raharjo, T. (2017). Characterization of *moaC* and a nontarget gene fragments of food-borne pathogen *Alcaligenes* sp. JG3 using degenerate colony and arbitrary PCRs. *Journal of Food Safety*, *37*(4), e12345.
- [3] Ethica, S. N., Oedjijono, O., Semiarti, E., Widada, J., & Raharjo, T. J. (2018). Genotypic and Phenotypic Characterization of *Alcaligenes javaensis* JG3 Potential as an Effective Biodegrader. *BIOTROPIA-The Southeast Asian Journal of Tropical Biology*, 25(1), 1-10.
- [4] Moretti, S. (2011). In silico experiments in scientific papers on molecular biology. *Science & Technology Studies*.
- [5] Kalendar, R., Muterko, A., Shamekova, M., & Zhambakin, K. (2017). In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching. In *PCR* (pp. 1-31). Springer, New York, NY.
- [6] Bikandi, J., Millán, R. S., Rementeria, A., & Garaizar, J. (2004). *In silico* analysis of complete bacterial genomes: PCR, AFLP–PCR and endonuclease restriction. *Bioinformatics*, 20(5), 798-799.
- [7] Ethica, S. N., Hammi, M. K., Lestari, P., Semiarti, E., Widada, J., & Raharjo, T. J. (2013). Amplification of Azospirillum sp. JG3 glpD gene fragment using degenerate primers generated by web-based tools. *The Journal of Microbiology, Biotechnology and Food Sciences*, 3(3), 231.
- [8] Ethica, S. N., & Raharjo, T. J. (2014). Detection of genes involved in glycerol metabolism of *Alcaligenes* sp. JG3 (Doctoral dissertation, Universitas Gadjah Mada).
- [9] Priyadharsini, J. V., Girija, A. S., & Paramasivam, A. (2018). In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species. *Archives of oral biology*, *94*, 93-98.

IOP Conf. Series: Earth and Environmental Science 292 (2019) 012033 doi:10.1088/1755-1315/292/1/012033

- [10] Gupta, S., Dongre, A., Saxena, J., & Jyoti, A. (2017). Computation and *in silico* validation of a real-time PCR array for quantitative detection of pathogens isolated from blood sample in sepsis patients.
- [11] Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. *BMC microbiology*, 10(1), 189.
- [12] Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. (2007). Primer3Plus, an enhanced web interface to Primer3. *Nucleic acids research*, *35*(suppl_2), W71-W74.
- [13] Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., & Madden, T. L. (2008). NCBI BLAST: a better web interface. *Nucleic acids research*, *36*(suppl 2), W5-W9.
- [14] Schwarz, G., & Mendel, R. R. (2006). Molybdenum cofactor biosynthesis and molybdenum enzymes. *Annu. Rev. Plant Biol.*, *57*, 623-647.
- [15] Wuebbens, M. M., Liu, M. T., Rajagopalan, K. V., & Schindelin, H. (2000). Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. *Structure*, *8*(7), 709-718.
- [16] Schwarz, G. (2005). Molybdenum cofactor biosynthesis and deficiency. *Cellular and Molecular Life Sciences CMLS*, *62*(23), 2792-2810.
- [17] Boutros, P. C., & Okey, A. B. (2004). PUNS: transcriptomic-and genomic-in silico PCR for enhanced primer design. *Bioinformatics*, *20*(15), 2399-2400.