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Fetal mortality and newborn health issues require urgent attention because of high maternal and infant
mortality rates during labor, highlighting the critical need for accurate fetal condition monitoring to re-
duce complications. This study proposes the development of a fetal health risk classification model based
on Important Feature Selection (IFS) and a Classification and Regression Tree (CART) using cardiotocog-
raphy (CTG) data from the UCI Machine Learning Repository. The IFS method was used to select the
most relevant features, reduce model complexity, and increase generalization to prevent overfitting. The
IFS-CART model was tested with 10-fold cross-validation and showed an accuracy of 94.50%, superior to
the conventional CART, which only reached 93.83%. In addition, the average values of the True Positive
Rate (TPR) and True Negative Rate (TNR) also increased, indicating that this model is effective in distin-
guishing normal, suspected, and pathological fetal conditions. Evaluation using the area under the curve
receiver operating characteristic (AUC-ROC) showed that the model had high performance in detecting
at-risk conditions, with an AUC of 0.981 for the ”suspect” class. This finding confirmed that IFS-CART is
not only accurate but also has high interpretability, making it easy for medical personnel to use for clinical
decision support. The results of this study show that IFS-CART can serve as a reliable decision support
system for real-time fetal health monitoring. Further implementation is expected to improve diagnostic
accuracy and prevent complications during pregnancy and labor

Povzetek: Opisan je nov model za klasifikacijo tveganja za zdravje ploda z uporabo izbire pomembnih
značilnosti in metode CART na podatkih kardiotokografije.

1 Introduction

Fetal hypoxia occurs when oxygen supply to the fetus is
insufficient during labor. This condition can cause severe
consequences, including intrapartum stillbirth, asphyxia,
neonatal encephalopathy, neonatal death, and neurodevel-
opmental impairment [1]. The incidence of fetal hypoxia in
European hospitals ranges from 0.06% to 2.8% [2]. Glob-
ally, intrapartum fetal hypoxia results in approximately
1.3 million stillbirths, 0.9 million neonatal deaths, and
0.6 to 1 million cases of long-term disability from neona-
tal hypoxic-ischemic encephalopathy annually [3]. These
statistics underscore the urgency of addressing this issue to
prevent further cases. Labor naturally induces a degree of
hypoxic stress as uterine contractions (UC) potentially im-
pair maternal placental perfusion, compromising fetal oxy-

gen delivery. Clinicians face the challenge of identifying
the small number of cases where physiological protective
mechanisms fail to compensate for labor-induced hypoxic
stress, leading to significant cerebral injury [4]. Effective
fetal monitoring during labor is crucial to prevent the dev-
astating effects of fetal hypoxia. However, it must also be
sufficiently discriminatory to minimize unnecessary iatro-
genic interventions, such as caesarean sections, which carry
their own risks to both mother and baby [5].

Cardiotocography (CTG) is a commonly used screening
tool for monitoring fetal conditions, such as fetal heart rate
(FHR) and uterine contractions (UC). Unfortunately, the in-
terpretation of CTG is subjective and depends on the clini-
cian’s experience, which often leads to erroneous diagnoses
and unnecessary medical interventions [6]. This has led to
an increased interest in machine learning to provide a more
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objective and accurate analysis. A promising approach is
the classification and regression tree (CART), which has a
structure that is easy to interpret [7] .
However, CART is prone to overfitting, particularly

when all features in the dataset are used without selection.
To overcome this drawback, this study proposes the inte-
gration of an important feature selection (IFS) method with
CART. IFS helps select the most relevant features, reduce
model complexity, and increase robustness to overfitting,
thereby improving classification accuracy. In addition, IFS
increases the resistance to overfitting, thereby improving
classification accuracy.
Themain contribution of this research is the development

of an IFS-CART model that is not only accurate but also
easy to interpret. The CART model is not only accurate
but also easy to interpret, providing practical benefits for
medical personnel performing risk assessments without the
need for an in-depth understanding of computational mod-
els. This research also demonstrates how the combination
of IFS and CART can overcome the limitations of previ-
ous state-of-the-art models, such as SVM and Naive Bayes,
which, although accurate, lack high interpretability and re-
quire complex computations.
The remainder of this paper is organized as follows. Sec-

tion 2 presents a comprehensive review of related studies,
highlighting previous research and machine learning tech-
niques. Section 3 outlines the research methodology, in-
cluding the dataset, preprocessing steps, model develop-
ment, and validation procedures, to ensure the reliability
of the results. Section 4 presents the experimental findings
with an in-depth discussion, provides critical insights, and
presents the results in the context of existing literature. Fi-
nally, Section 5 draws conclusions from the study and pro-
poses recommendations for future research to strengthen
the findings presented.

2 Related works

Various machine learning techniques have been applied to
analyze cardiotocography (CTG) data to improve the accu-
racy and reliability of fetal health condition diagnosis. In-
novations in these techniques are evolving along with the
increasing need for models that are not only accurate but
also interpretative and easy to use in a clinical context.
Sahin and Subasi [8] initially investigated the integration

of a support vector machine (SVM) with an empirical mode
decomposition (EMD) metaheuristic technique to enhance
the accuracy of fetal condition classification. The model
attained an accuracy of 86% by utilizing a limited dataset
of 90 samples. Nevertheless, they encounter challenges re-
garding computational complexity and constraints in the in-
terpretation of the results. In the same study, the authors
evaluated the naive bayes (NB) model, which is recognized
for its simplicity and computational efficiency, achieving
an accuracy of 96.77%. However, NB performance fre-
quently deteriorates when applied to datasets containing ir-

relevant or redundant features, indicating the necessity for
more effective feature selection in fetal health predictive
models.
In 2016, Yılmaz [9] introduced and compared three neu-

ral network architectures: multilayer perceptron neural
network (MLPNN), probabilistic neural network (PNN),
and general regression neural network (GRNN). Each of
these architectures was designed to address specific chal-
lenges in fetal health data analysis, especially in detecting
complex nonlinear patterns in CTG data. The MLPNN
model demonstrated the ability to detect nonlinear rela-
tionships with an accuracy of 90.35%, recall of 78.71%,
specificity of 90.50%, precision of 84.44%, and F1-score
of 81.47%. However, MLPNN require a long training time
and are prone to overfitting, especially when the data fea-
tures are large or poorly structured. In contrast, PNNs ex-
cel at classification speed and are well suited for process-
ing biomedical data, such as physiological signals on CTG,
with an accuracy of 92.15%, recall of 82.82%, specificity
of 92.24%, precision of 87.63%, and F1-score of 85.16%.
However, PNN require large memory resources, which is
an obstacle in large-scale clinical applications. In contrast,
the GRNN models offer continuous prediction capabilities
with 91.86% accuracy, 83.92% recall, 92.62% specificity,
85.81% precision, and an 84.85% F1-score. However, the
proposed GRNN model is less optimal for distinct classi-
fications and requires careful parameterization to achieve
the best performance. These limitations suggest that al-
though neural networks are capable of good performance,
their computational complexity and susceptibility to over-
fitting limit their applicability in clinical contexts where
quick and intuitive interpretation is required.
More recently, Chuatak et al. [7] applied a classification

and regression tree (CART) to a CTG dataset with 2,126
samples from the UCI Repository. The CART model is
known for its easy-to-understand tree structure and abil-
ity to produce clear classification rules for medical person-
nel without requiring a deep understanding of the compu-
tational models. In this study, CART achieved an accuracy
of 93.65%. However, the main limitation of CART is its
susceptibility to overfitting when all dataset features are
used without selection. Thus, additional techniques, such
as boosting or bagging, are required to achieve optimal per-
formance, especially on large datasets with many features.
In 2024, Shalini et al. [10] extended the exploration of

machine learning models on CTG data by comparing var-
ious models, including Linear Regression, Random For-
est, K-Nearest Neighbors (KNN), Gradient Boosting Clas-
sifier, Decision Tree, and Support Vector Classifier. Based
on the same dataset of 2,126 samples, the Random For-
est and Decision Tree models achieved 93% and 85% ac-
curacy, respectively. The Linear Regression, KNN, and
gradient boosting classifier models demonstrated varying
performances, with accuracies ranging from 89% to 90%,
whereas the support vector classifier obtained a lower accu-
racy of 81%. This study showed that although some of these
models provide reasonably good results, they have limita-
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tions in both accuracy and interpretability, making them
less than ideal in clinical contexts that require quick and
accurate decisions.
To facilitate a clear comparison, Table 2 summarizes the

performance of the various machine learning models on the
CTG data.
Through these studies, it can be seen that neural network-

based models, such as MLPNN, PNN, and GRNN, perform
quite well in the classification and prediction of fetal condi-
tions. However, their high computational requirements and
interpretation complexity are obstacles in clinical applica-
tions that require fast and reliable decisions. In addition,
traditional models such as SVM and NB demonstrate fast
performance; however, they have limitations when han-
dling data with redundant or overlapping features, which
often results in decreased accuracy under certain condi-
tions.
This study selected CART because of its ability to gen-

erate classification rules that are clear and easy to interpret
by medical personnel, without the need for in-depth knowl-
edge of computational models. However, without proper
feature selection, CART is prone to overfitting when ap-
plied to large datasets with many features. To address this
issue, this study proposes the integration of an essential
feature selection (IFS) method with CART. IFS allows the
model to retain only the most relevant features, thereby re-
ducing complexity, increasing generalizability, and ensur-
ing reliable results in clinical practice.

3 Methodology

3.1 Dataset

In this study we used the cardiotocography (CTG) dataset
from the UCI Machine Learning Repository [11]. The
dataset comprises 2126 entries with information on third-
trimester pregnant women. It includes 21 features and one
feature class (NSP) used to determine the fetal heart rate
(FHR) and uterine contractions (UC) in the CTG dataset.
A comprehensive overview of the CTG dataset used in this
study is presented in Table 3.1.

3.2 Decision tree-based learning

Decision tree-based learning represents an effective ap-
proach for addressing regression and classification prob-
lems. Support Vector Machines (SVM) and Decision Trees
(DT) are among the machine learning techniques utilized
for these tasks [12]. DT offers distinct advantages, includ-
ing independence from predictor parameter distribution as-
sumptions and computational efficiency. Furthermore, de-
cision trees can effectively handle missing data [13].
A hypothetical study employs a vector of two indepen-

dent variables (X1, X2) to construct a tree. Figure 1 il-
lustrates a model comprising four internal nodes and five
leaves, used to estimate the target parameter. The tree’s

growth progresses from top to bottom, with initial compar-
isons made betweenX1 and the threshold value T1. Subse-
quent steps depend on whetherX1 exceeds T1, determining
the branch selection.

Yes No

Yes No Yes No

Yes No

Figure 1: A typical decision trees

Various techniques exist for creating decision tree-based
regressor classification models, including fuzzy ID3 [14],
ID3 [15], C4.5 [16], and CART [17]. DT offers supe-
rior interpretability and visualization compared to black-
box models like artificial neural networks, facilitating eas-
ier comprehension of results in regression and classification
problems.
However, DT presents certain limitations. In regression

analysis, it can only estimate continuous values. Addition-
ally, the tree structure may become complex due to numer-
ous branches in classification and regression tasks. The
modeling data significantly influences the DT structure, po-
tentially leading to inconsistent results and structural vari-
ations across datasets.
The CART model, widely adopted for its efficiency in

processing qualitative and quantitative data [17], employs
recursive binary splitting. This study utilizes the CART al-
gorithm with the Gini splitting rule. The permutation ap-
proach and mini measure identify relevant dataset charac-
teristics.
The percentage of samples in category k (0 or 1) at a node

is expressed in Equation (1):

pk =
nk

n
(1)

where p represents the data class probability at node τ . The
mini impurity i(τ) is calculated using Equation (2).

i(τ) = 1−
∑
k

p2k (2)

For a two-class problem in (3):

i(τ) = 1− p21 − p20 (3)

TheGini impurity changewhen nodes split into subnodes
τ1 and τ2 is formulated in Equation (4):
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Table 1: Performances of several machine learning models on CTG data based on previous studies

Studies Models Accuracy (%) Precision (%) Recall (%) Dataset Size
[8] SVM + EMD 86.0 - - 90
[8] NB 96.77 - - 90
[9] MLPNN 90.35 84.44 78.71 2,126
[9] PNN 92.15 87.63 82.82 2,126
[9] GRNN 91.86 85.81 83.92 2,126
[7] CART 93.65 - - 2,126
[10] Linear Regression 89 82.67 77 2,126
[10] Random Forest 93 87.33 85.67 2,126
[10] KNN 90 82.67 76.67 2,126
[10] Gradient Boosting Classifier 90 80.67 77.67 2,126
[10] Decision Tree 85 85 85 2,126
[10] Support Vector Classifier 81 80.67 79.67 2,126

∆i(τ) = i(τ)− pli(τ1)− pri(τ2) (4)

The algorithm tracks and aggregates each node’s i(τ)
drop. Using a single CART Gini Importance is formulated
in (5):

IG(θ) =
∑
τ

∑
T

∆iθ(τ, T ) (5)

The Gini importance identifies relevant features for the
classification objective function, indicating feature fre-
quency as a separator and its discriminative value. In equa-
tion (5), T represents the number of trees in the model, and
IG(θ) denotes the corresponding Gini importance.

3.3 Proposed model
Figure 2 illustrates the block diagram of our proposed
model. We initiated the process by selecting the CTG
dataset, comprising 2216 original samples. Subsequently,
we divided and categorized the data to enhance system
transparency. We implemented decision trees and rule-
based classifiers using 10-fold cross-validation for model-
ing categorization. The folds served as training data to de-
velop the model. We utilized the remaining data as a test set
to validate the resulting model and determine performance
metrics, such as accuracy.

3.3.1 Data preparation

Each feature in the cardiotocography (CTG) dataset ex-
hibits distinct value ranges and units, such as fetal heart
rate (FHR) and uterine contractions (UC). This scale dispar-
ity among features can lead to imbalances. Classification
algorithms like CART may overemphasize features with
larger values, compromising model performance. Conse-
quently, normalization becomes essential to ensure equal
feature contribution in machine learning processes and pre-
vent model bias.

This study employs zero-mean normalization to trans-
form numerical features. This technique ensures a mean of
zero and uniform variance for each feature, enhancing data
distribution consistency. Zero-mean normalization proves
particularly valuable when handling high-variance data, en-
abling optimal model performance unaffected by feature
scale differences.
The zero-mean normalization equation is expressed as in

Equation (6):

x′ =
x− µ

σ
(6)

where: x′ represents the normalized feature value, x de-
notes the original feature value, µ signifies the average fea-
ture value, and σ indicates the feature’s standard deviation.
This normalization step is crucial for maintaining data

integrity and improving overall model accuracy in the anal-
ysis of cardiotocography dataset.

3.3.2 Feature preprocessing and selection

Feature selection using Important Feature Selection (IFS)
follows the normalization process. This step is crucial in
analyzing medical data like CTGs, which often contain nu-
merous characteristics, not all relevant for fetal health status
classification. IFS selects features that significantly con-
tribute to classifying fetal status (normal, suspect, or patho-
logical).
The proposed method employs the Information Gain cri-

terion to assess feature relevance based on its impact in re-
ducing data entropy. Features with minimal contributions
are eliminated, retaining only important ones for model
training. This approach reduces dataset dimensionality, en-
hances computational efficiency, and accelerates training.
It also minimizes overfitting risk, resulting in a more accu-
rate and interpretable model.
Equation (7) calculates feature significance in IFS using

the Information Gain criterion:
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Table 2: CTG dataset description
Features Information
BV FHR baseline (beats per minute)
AC FHR of acceleration per second
FM FHR of fetal movements per second
UC FHR of uterine contractions per second
LD FHR of light deceleration per second
SD FHR of severe deceleration per second
PD FHR during prolonged deceleration per second

ASTV Percentage of time with abnormal short-term variability
MSTV Mean short-term variability
ALTV Percentage of time with abnormal long-term variability
MLTV Mean long-term variability
HW Width of the FHR histogram
HMin Minimum FHR histogram
HMax Maximum FHR histogram
HNMax FHR of histogram peaks
NZ The FHR of the histogram zeros is given by
HMo Histogram mode
HMean Histogram mean
HMed Histogram median
HV Histogram variance
HT Histogram tendency
NSP Fetal state class code (N=normal; S=suspect; P=pathologic)

IG(S,A) = E(S)−
∑

v∈V alues(A)

|Sv|
|S|

× E(Sv) (7)

Where IG(S,A) represents feature A’s information gain
relative to dataset S, Sv is the data subset based on a par-
ticular value of feature A, and E(S) measures uncertainty
or entropy in dataset S.
Information gain quantitatively evaluates each feature’s

contribution to reducing classification target uncertainty. It
provides a direct indication of a feature’s ability to improve
model class separation by calculating entropy change be-
fore and after feature use.
This method was chosen for its ability to explicitly mea-

sure individual feature relevance to the classification target,
offering advantages over techniques like Principal Com-
ponent Analysis (PCA). While PCA reduces dataset di-
mensionality, it transforms features into a new dimensional
space without considering specific contributions to the clas-
sification target, often losing original feature interpretabil-
ity.
The Information Gain criterion ensures retained original

features directly relate to the classification target, maintain-
ing model result interpretability and clarity. Features with
low IG values are eliminated, while those with high values
are retained. This process reduces dataset complexity, im-
proves computational efficiency, and minimizes overfitting
risk.

By retaining the most relevant features, the model pro-
duces more accurate predictions while maintaining a clear
relationship between important features and classification
results. This approach is vital in clinical applications and
data-driven analyses where interpretability and efficiency
are key factors for model effectiveness.

3.3.3 Overfitting control and hyperparameter
optimization

IFS-CART implements critical steps to maintain high ac-
curacy while resisting overfitting. These steps include hy-
perparameter optimization and cross-validation. Overfit-
ting occurs when a model performs exceptionally well on
training data but fails to predict new data accurately, lead-
ing to decreased performance in real-world conditions. To
mitigate this issue, the study optimizes key hyperparame-
ters such as maximum tree depth (max_depth), pruning,
andminimum samples per leaf. These optimizations reduce
model complexity without sacrificing accuracy.
Cost-complexity pruning serves as a primary technique.

This method eliminates tree branches that minimally con-
tribute to model performance, maintaining model simplic-
ity and preventing overfitting by reducing tree size. The
pruning process is optimized using Equation (8).

Rα(T ) = R(T ) + α · |T | (8)

Here, Rα(T ) represents the tree’s cost after consider-
ing its complexity, R(T ) denotes the total classification er-
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Figure 2: Schematic model of fetal health risk status classification using the CTG dataset

ror, and |T | signifies the number of tree nodes. The pa-
rameter α controls complexity; a higher α value results
in a smaller, simpler tree. This optimization retains only
nodes that significantly contribute to classification results,
enhancing model efficiency and interpretability.

3.3.4 Model stability and generalizability via
cross-validation

Cross-validation ensures model stability and generalizabil-
ity. This study employed 10-fold cross-validation to opti-
mize tree structure and maintain performance consistency.
The dataset was divided into 10 subsets. Each subset served
as test data, while the remaining nine were used for training.
This process repeated until all folds were tested.
Cross-validation tests the model across various data con-

figurations, providing a comprehensive performance as-
sessment. It reduces overfitting risk and enhances result
reliability. By averaging performance metrics from each
fold, the model demonstrates consistent performance inde-

pendent of specific data.
This validation approach is crucial in medical applica-

tions. It increases confidence in the model’s ability to func-
tion optimally beyond training data, including real clinical
scenarios [18, 19, 20, 21, 22].

3.3.5 Evaluation of the implications for clinical
applications

To ensure the comprehensive performance of the IFS-
CART model, this study used several confusion matrix-
based metrics. In addition to accuracy (ACC), metrics such
as recall or true positive rate (TPR), precision or positive
predictive value (PPV), and specificity or true negative rate
(TNR) were evaluated to provide a deeper understanding
of the model’s ability to classify different classes (normal,
suspect, and pathological). In Equations (9), (10), (11),
and (12), provideive the appropriate formulas for the ACC,
TPR, PPV, and TNR.
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ACC =
TP + TN

TP + FP + FN + TN
× 100 (9)

TPR =
TP

TP + FN
× 100 (10)

PPV =
TP

TP + FP
× 100 (11)

TNR =
TN

TN + FP
× 100 (12)

Where TP (True Positive) denotes the number of correct
predictions for each target class (normal, suspect, patho-
logical), and FP (False Positive) and FN (False Negative)
describe the prediction errors that may affect clinical deci-
sions. Using these metrics, the model is not only measured
based on overall accuracy but also assessed in terms of its
ability to distinguish high-risk cases (suspect and patholog-
ical) from normal cases.
In addition, this study also applied the area under the

curve receiver operating characteristic (AUC-ROC) to pro-
vide an additional evaluation of themodel’s ability to distin-
guish positive and negative classes at various classification
thresholds. The AUC-ROC is particularly relevant in the
medical context as it can assess how well the model pre-
dicts suspect and pathological conditions compared to nor-
mal classes. The ROC curve plots the TPR against the false
positive rate at various thresholds, and AUC values close
to 1.0 indicate that the model has excellent and consistent
classification ability.

4 Results and discussion
A computing platform with an Intel Core i5 2.5GHz dual-
core CPU, 16 GB of RAM, and the 64-bit operating sys-
temmacOSCatalinawas used for the experiments. KNIME
version 4.7.0 produced model performance as the calcula-
tion output, including accuracy, recall, and Precision.

4.1 Results
First, we applied the CART model without importance fea-
ture selection (IFS) on the CTG dataset. All features in this
dataset are used for the optimal classification analysis of the
data. The experimental results are presented in Table 4.1.
The model produced good ACC (93.83%), and the aver-
age values of the TPR (93.83%), PPV (93.83%), and TNR
(96.91%) measures also obtained good average values. The
results are quite good, but this model still indicates overfit-
ting, which can be seen in some incorrect predictions that
should be predicted correctly.
In the second experiment, the importance feature selec-

tion (IFS) method was implemented to select important and
influential features to tackle overfitting in the CARTmodel.
Figure 3 presents the results of analyzing relevant features
using IFS obtained from the CTG dataset. We found that

the MSTV feature had the greatest effect with an impor-
tance value of more than 20.50% when using all features
in the CTG dataset. Some features, including NZ and SD,
had no impact on the CART model’s development, where
they were of 0% importance in tree building. The HT fea-
ture had the lowest effect (0.95%) compared to the other
features. The results show that MSTV, ASTV, ALTV, and
HMe have the highest significance. Based on this result, all
features with less than 2% importance were removed from
the new dataset; thus, 18 features remained in this process.
The new CTG data is then used for reclassification using
the CART-based important feature selection model (IFS-
CART). The aim of this stage is to obtain logic classifica-
tion results based on important features. The results of the
second set of experiments are presented in Table 4.
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Figure 3: Feature importance of the proposed CARTmodel
on the CTG dataset using all features

As can be seen in Table 4, this model resulted in an ACC
(94.50%) which is quite impressive as it is up 0.67% from
the first experiment results. Meanwhile, the average val-
ues of TPR (94.49%), PPV (94.47%), and TNR (97.25%)
across all classes also improved compared to the first ex-
perimental results. In this case, the proposed model mostly
produced relatively good classification averages and ob-
tained impressive class prediction results. Based on these
results, the proposed model is quite promising because it
can improve the classification performance of the CART
model on the CTG dataset with a superb average value.
A more detailed comparison of the first and second ex-
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Table 3: Confusion matrix of CART without IFS on the CTG dataset
Predicted Class ACC (%) TPR (%) PPV (%) TNR (%)(1) (2) (3)

Targeted Class
(1) 446 35 6

93.83
91.58 90.84 95.51

(2) 37 467 4 91.93 92.66 96.23
(3) 8 2 485 97.98 97.98 98.99

Average 93.83 93.83 96.91

Note: (1) Normal; (2) Suspect; (3) Pathological

Table 4: Confusion matrix of CART with IFS on the CTG dataset
Predicted Class ACC (%) TPR (%) PPV (%) TNR (%)(1) (2) (3)

Targeted Class
(1) 443 33 11

94.50
90.97 92.87 96.61

(2) 29 476 3 93.70 93.33 96.54
(3) 5 1 489 98.79 97.22 98.59

Average 94.49 94.47 97.25

Note: (1) Normal; (2) Suspect; (3) Pathological

periments is presented in Table 5. The best model perfor-
mance results are indicated by bold numbers. As shown in
Table 5, the second experiment with ACC value (94.50%)
outperformed the first experiment. TPR outperformed the
first experiment in classes 2 and 3 with values of (2 =
93.70%) and (3 = 98.79%), respectively. In addition, PPV
and TNR also outperformed in class (1) and (2), with the
respective values of PPV in class (1 = 92.87%) and class
(2 = 93.33%), while the respective values of TNR in class
(1 = 96.61%) and class (2 = 96.54%). In contrast to the
first experiment, the classification performance was supe-
rior only in class TPR (1= 91.58%) and only for PPV and
TNR in class 3 with values of 97.98% and 98.99%, respec-
tively. In the second experiment, the average TPR, PPV,
and TNR values were superior to those in the first experi-
ment, with average values of 94.49%, 94.47%, and 97.25%,
respectively. Based on the experimental results, overall, the
proposed model in the second experiment outperforms the
first experiment in which the ACC and average values of
TPR, PPV, and TNR were quite impressive.
In the third experiment, we compared the proposed

model with other models such as NB, MLP, SVM, k-NN,
LR, and C4.5, as shown in Table 6. The results show
that the accuracy (ACC), error classification (E-CL), cor-
rect classification (C-CL), and incorrect classification (I-
CL) of our proposed model gives better results than the
other models with respective values of ACC (94.73%), E-
CL (5.27%), C-CL (2014), and I-CL (112). The second,
third, and fourth best models based on accuracy were C4.4
with ACC (92.24%), k-NN with ACC (90.31%), and Lo-
gistic Regression with ACC (89.24%). The best result was
MLP with ACC (81.70%).
To ensure that the IFS-CART model is not only accurate

but also resistant to overfitting and has good generalizabil-

ity, an evaluation was conducted on the training data and
separate test datasets. This evaluation involves the calcu-
lation of accuracy metrics as the main performance indica-
tor, which is reinforced by AUC-ROC analysis to provide
a more comprehensive understanding of the model’s ability
to distinguish each target class: normal (1.0), suspect (2.0),
and pathological (3.0). The results are shown in Figures 4
and 5.

As shown in Figure 4, the performance of the IFS-CART
model remained consistent between the training and test
data, with an accuracy of 94.73% on the training data and
93.80% on the test data. This minimal difference in perfor-
mance indicates that the model does not experience overfit-
ting and can generalize well to new data. In addition to ac-
curacy, similar consistency was observed in the precision,
recall, and specificity metrics, indicating that the model
maintained high performance on both datasets. These re-
sults demonstrate that hyperparameter optimization, in-
cluding pruning and limiting the maximum tree depth, suc-
cessfully prevented the model from learning noise or irrel-
evant patterns from the training data. As shown in Figure
4, the performance of the IFS-CART model remained con-
sistent between the training and test data, with an accuracy
of 94.73% on the training data and 93.80% on the test data.
This minimal difference in performance indicates that the
model does not experience overfitting and can generalize
well to new data. In addition to accuracy, similar consis-
tency was observed in the precision, recall, and specificity
metrics, indicating that the model maintained high perfor-
mance on both datasets. These results demonstrate that hy-
perparameter optimization, including pruning and limiting
the maximum tree depth, successfully prevented the model
from learning noise or irrelevant patterns from the training
data.
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Table 5: Comparison results between the first and second experiment of CTG dataset
Predicted Class ACC (%) TPR (%) PPV (%) TNR (%)(1) (2) (3)

CART Targeted Class
(1) 446 35 6

93.83
91.58 90.84 95.51

(2) 37 467 4 91.93 92.66 96.23
(3) 8 2 485 97.98 97.98 98.99

Average 93.83 93.83 96.91

CART+IFS Targeted Class
(1) 443 33 11

94.73
90.97 92.87 96.61

(2) 29 476 3 93.70 93.33 96.54
(3) 5 1 489 98.79 97.22 98.59

Average 94.49 94.47 97.25

Note: (1) Normal; (2) Suspect; (3) Pathological

Table 6: Comparative effectiveness of proposed and traditional machine learning models on the CTG dataset
Approaches Models ACC (%) E-CL* (%) C-CL** I-CL***

Machine Learning Traditional

NB 83.90 16.04 1785 341
MLP 81.70 18.30 1737 389
SVM 87.58 12.42 1862 264
k-NN 90.31 9.69 1920 206
LR 89.37 10.63 1900 226

Decision Tree-Based
C4.5 92.24 7.76 1961 165
CART 93.83 7.79 1962 164

Proposed Model 94.73 5.27 2014 112

Note: *Error Classification (E-CL), **Correctly Classified (C-CL), ***Incorrectly Classified (I-CL)

The evaluation of the AUC-ROC also confirms that the
model is excellent in distinguishing the positive and nega-
tive classes. Figure 5 shows the ROC curves for each target
class.

As shown in Figure 5, for the suspect class, the proposed
model performed best with an AUC of 0.981. The ROC
curve for this class is close to the upper left corner of the
graph, indicating that the model achieved a high detection
rate with minimal error. This performance is particularly
relevant in a clinical context because the suspect class re-
quires more intensive monitoring and early intervention to
avoid the development of more serious conditions. In the
pathological class, the model also performed reasonably
well, with an AUC of 0.778. Although these results were
sufficient to detect most high-risk conditions, some predic-
tion errors indicated a feature overlap between the suspect
and pathological classes. This reduces the accuracy of clas-
sification in certain cases, but it still provides a strong ba-
sis for medical personnel to detect critical conditions early.
Further improvements to feature selection and threshold op-
timization can improve accuracy and reduce errors in this
class. In contrast, the model performed very poorly in the
normal class, exhibiting an AUC of 0.097. The ROC curve
for this class almost follows a random line, indicating that
the model has difficulty distinguishing between the normal
and suspect classes. This low performance is likely due to
an imbalance in the number of samples or feature overlap

between the two classes, whichmakes prediction under nor-
mal conditions inaccurate. This emphasizes the importance
of improving feature selection and dataset balancing to im-
prove prediction accuracy in the normal class and reduce
the possibility of unnecessary false positives. Overall, the
AUC-ROC evaluation results showed that the IFS-CART
model has great potential for detecting high-risk conditions,
such as suspicious and pathological conditions, with good
accuracy. Despite the weakness in normal class detection,
this model remains relevant as a reliable diagnostic tool
for real-time monitoring of fetal health. With additional
optimization, the model can further strengthen support for
rapid and accurate clinical decision-making, ensuring that
at-risk conditions are detected in time to prevent more seri-
ous complications.
Finally, we compared the proposed model with previous

studies. The results are presented in Table 4.1.
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Figure 4: Comparison of the performance of the IFS-CART
model with training and test data for each class (normal,
suspect, and pathological)

The comparison results presented in Table 7 show that
the proposed IFS-CART model achieved the highest ac-
curacy of 94.73%, outperforming various machine learn-
ing models reported in previous studies. The conventional
CART model reported in reference [7] achieved an accu-
racy of 93.65%, whereas the random forest and logistic re-
gressionmodels reported in reference [10] only achieved an
accuracy of 85%. The Decision Tree and Gradient Boost-
ing Classifier models, with 93% and 90% accuracy, respec-
tively, and the K-Nearest Neighbor (k-NN) model, with
90% accuracy [10], also fall below the accuracy level of
the proposed model. In addition, some neural network-

Table 7: Comparison between the proposedmodel and prior
studies

Studies ACC (%)
CART [7, 11] 93.65

Random Forest [10] 85
Decision Tree [10] 93

K-Nearest Neighbor [10] 90
Logistic Regression [10] 85

Gradient Boosting Classifier [10] 90
Support Vector Machine [10] 81

MLPNN [9] 90.35
PNN [9] 92.15
GRNN [9] 91.86

Proposed Model 94.73

Figure 5: Receiver operating characteristic curves and area
under the curve of the IFS-CART model for each fetal
health class: normal (1.0), suspect (2.0), and pathological
(3.0)

based models, such as the Multi-Layer Perceptron Neural
Network (MLPNN)with an accuracy of 90.35%, the Proba-
bilistic Neural Network (PNN)with an accuracy of 92.15%,
and the General Regression Neural Network (GRNN) with
an accuracy of 91.86% [9], although performing quite well,
still show lower accuracy than the IFS-CARTmodel. Based
on these data, the proposed model showed a significant im-
provement in accuracy compared with other existing mod-
els, making it the highest performing model for fetal health
risk classification in the context of this study.

4.2 Discussions

The experimental results demonstrate that integrating the
Important Feature Selection (IFS) method with the Classifi-
cation and Regression Tree (CART) algorithm significantly
improves fetal health classification using cardiotocography
(CTG) data. The application of IFS successfully reduces
dataset dimensionality by identifying the most relevant fea-
tures for classification, resulting in a simpler model with
reduced risk of overfitting. The IFS-CART model not only
achieves high accuracy but also maintains interpretability,
which is crucial in clinical applications, allowing medical
professionals to understand and effectively use this model
in decision-making.
Comparison of the first and second experiment results

shows significant performance improvement after IFS im-
plementation. Accuracy increased from 93.83% to 94.50%,
average True Positive Rate (TPR) improved from 93.83%
to 94.49%, and positive predictive value (PPV) rose from
93.83% to 94.47%. These results confirm that proper fea-
ture selection is critical for enhancing prediction accuracy
by reducing the influence of less relevant features. Addi-
tionally, the increase in True Negative Rate (TNR) from
96.91% to 97.25% indicates the model’s improved ability
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to identify negative cases, which can help reduce unneces-
sary medical interventions.
In the third experiment, the proposed IFS-CART model

was compared with other machine learning models from
previous studies to assess its superiority. With the high-
est accuracy of 94.73%, IFS-CART outperformed various
other models. For instance, conventional CART from pre-
vious references achieved 93.65% accuracy [7], while ran-
dom forest and logistic regression had 85% accuracy [10],
demonstrating that IFS-CART offers higher accuracy and
better efficiency. The Decision Tree model with 93% accu-
racy [10] approached IFS-CART’s performance but still fell
short. These results highlight that although traditional deci-
sion tree models offer good interpretability, the IFS-CART
model provides superior accuracy crucial for reliability in
medical applications.
Furthermore, K-Nearest Neighbor and Gradient Boost-

ing Classifier algorithms, each with 90% accuracy [10], as
well as Support Vector Machine (SVM) with 81% accu-
racy [10], showed limitations in handling the complexity
of fetal health classification compared to IFS-CART. Neu-
ral network-based models, such as multi-layer perceptron
neural network (MLPNN) with 90.35% accuracy, Proba-
bilistic Neural Network (PNN) with 92.15%, and General
Regression Neural Network (GRNN) with 91.86% [9], also
approached IFS-CART’s performance but required signif-
icantly more computational resources and were prone to
overfitting. In contrast, IFS-CART is not only more com-
putationally efficient but also easier to understand, allowing
medical professionals to interpret results quickly.
The Area Under Curve-Receiver Operating Characteris-

tic (AUC-ROC) evaluation shows that IFS-CART performs
well in distinguishing the ”suspect” class with an AUC
value of 0.981 and the ”pathological” class with an AUC
of 0.778. High performance in the ”suspect” class is par-
ticularly important in clinical settings, where at-risk cases
require intensive monitoring and early intervention to pre-
vent serious complications. However, the low AUC value
for the ”normal” class (0.097) indicates the model’s diffi-
culty in distinguishing between normal and at-risk condi-
tions. This difficulty may be due to sample imbalance and
feature overlap between normal and at-risk classes, which
can affect prediction accuracy for these classes. These re-
sults highlight the importance of additional optimization,
such as class data balancing and more effective feature se-
lection, to improve model performance in detecting normal
cases.
Additionally, the application of cost-complexity pruning

and tree depth limitation successfully reduced the risk of
overfitting, reflected in the consistency of model perfor-
mance between training and testing data. From a practi-
cal perspective, the IFS-CART model provides significant
value to medical professionals due to its high interpretabil-
ity. This model allows clinicians to utilize prediction re-
sults quickly and accurately without requiring a deep under-
standing of complex computational algorithms. This easy
interpretability is highly relevant in clinical contexts, where

quick and accurate decisions are crucial for reducing the
risk of complications during childbirth.
Furthermore, the model’s flexibility in handling data

variations and its ability to be integrated into real-time fe-
tal health monitoring systems demonstrate its initial poten-
tial as a reliable and effective solution in medical applica-
tions. However, these findings require further validation
using broader and more diverse datasets to ensure model
generalization and reliability across various clinical condi-
tions. Sub optimal performance in detecting normal cases
indicates the need for further strategies, such as enhanced
feature selection algorithms or class data balancing, to re-
duce false-positive predictions and improve accuracy.
Overall, this study shows that the combination of IFS and

CART is an effective strategy for classifying fetal health
risks using CTG data. These findings are in line with pre-
vious studies that have demonstrated the benefits of inte-
grating feature selection techniques with machine learning
algorithms to improve medical classification accuracy [2].
For example, [23] found that the use of feature selection
improved model performance in predicting pregnancy out-
comes based on CTG data. Finally, our findings not only
improve accuracy, but also offer important interpretability
and efficiency inmedical applications. With continuous op-
timization and validation, this model can support faster and
more accurate clinical decision-making.

5 Conclusions

In conclusion, this study highlights the theoretical and prac-
tical implications of developing a fetal health risk classifi-
cationmodel based on Essential Feature Selection (IFS) and
Classification and Regression Trees (CART) tested on car-
diotocography (CTG) data. The results of this study con-
firm the importance of relevant feature selection for im-
proving the accuracy of prediction models, which supports
more accurate clinical decision-making and potentially re-
duces the risk of maternal and fetal health complications.
The primary contribution of this study was the finding

that the integration of IFS and CART can improve the
consistency and interpretability of the model, making it
more practical for use by medical personnel without in-
depth knowledge of computational algorithms. This find-
ing could encourage the use of predictive models to detect
fetal risk conditions, which is clinically crucial in managing
cases of labor-related complications. Although the model
performed well in the “at-risk” category, this study identi-
fied the need for improved accuracy in distinguishing nor-
mal fetal conditions, especially to reduce the likelihood of
unnecessary medical interventions.
In future research, subsequent investigations should fo-

cus on refining feature selection techniques and data bal-
ancing methods to enhance prediction accuracy across all
fetal condition categories. Furthermore, additional testing
withmore extensive and diverse datasets will strengthen the
generalizability of the model in various clinical contexts.
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The exploration of more advanced machine learning mod-
els and automation in CTG data assessment are also crucial
steps to improve the accuracy and efficiency of predicting
real-time fetal health.
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