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ABSTRACT 
Diabetes is a chronic condition that affects blood sugar levels and vital organs in the body. 
Early detection is crucial given the increasing global prevalence of diabetes and the grave risk 
of complications if not properly managed. Thus, a good prediction system is necessary. 
Although the Decision Tree (DT) is commonly used for classification, it is less effective with large 
datasets. We propose hyperparameter optimization of the DT using the Grey Wolf Optimization 
(GWO), which has exploration and both exploitation capabilities. However, the limited search 
space of GWO may hinder practical exploration and exploitation, leading to premature optimiza
tion. To address this, we propose a modified GWO (MGWO) by adding the Levy distribution 
function to enhance the movements of alpha, beta, and delta wolves. We also provide GA 
(Genetic Algorithm) as a comparative algorithm. The fitness value of MGWO is 0.8498, surpassing 
GWO (0.8373) and GA (0.8492). Evaluation results indicate that MGWO and GA yield similar and 
superior accuracy compared to GWO. The proposed method outperforms existing ones. Further 
research is needed to evaluate the impact of varying the number of wolves on optimization per
formance and classification accuracy.
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1. Introduction

Diabetes is a chronic condition that affects blood sugar 
levels and can harm vital organs in the body. There are 
two main types, Type 1 and Type 2, which affect adults 
differently. Type 1 diabetes occurs when the body can
not produce enough insulin, whereas type 2 diabetes 
arises from the body’s resistance to insulin. Effective 
diabetes management, including insulin usage, is vital 
for the 422 million people worldwide affected by dia
betes, which causes 1.5 million deaths annually. 
Diabetes manifests with symptoms like extreme thirst, 
increased appetite, frequent need to urinate, feeling 
unwell, and slow healing of cuts. If not addressed 
promptly, diabetes can escalate into a severe illness. In 
2017, 451 million people globally had diabetes, and this 
number is expected to rise to 693 million by 2045. 
Studies by Habibi et al. (2015); Yaribeygi et al. (2016); 
Gosh (2017) indicate that health concerns increase 
when diagnosis is delayed. Guidelines for preventing 
and reducing the risk of diabetes emphasize the impor
tance of early detection (Zhu et al. 2015; Woldesemayat 
2019). Although we focus on preventing diabetes, cur
rent treatment methods are insufficient. Therefore, 

accurate prediction is essential for early detection, rep
resenting a significant advancement in medical care.

Machine Learning (ML) models are considered a 
solution for diabetes prediction. For instance, the dia
betes prediction system, based on IoT-edge Artificial 
Intelligence (AI)-blockchain and using the Random 
Forest (RF) algorithm, shows an average accuracy that 
is 4.57% higher than Logistic Regression (LR) and 
Support Vector Machine (SVM) (Hennebelle et al. 
2024). Combining data mining and metaheuristic tech
niques for predicting the early readmission probability 
of diabetic patients showed that RF, GA-SVM, SVM, 
and Neural Network models have accuracies of 74.04%, 
73.52%, 72.40%, and 70.44%, respectively, with a 1.12% 
increase in SVM accuracy through Genetic Algorithms 
(GA) (Zeinalnezhad and Shishehchi 2024). Hybrid ML 
and interaction features in the Feature Interaction- 
based Greedy Sequential Feature Selection to predict 
type 2 diabetes and prediabetes resulted in a model 
with high accuracy (98.87% for Type 2 diabetes and 
90.12% for prediabetes) and good interpretability. ML 
models with PCA and ensemble bagging decision tree 
classification accurately predicted early-stage diabetes 

CONTACT Muhammad Sam’an muhammad92sam@unimus.ac.id 
� 2025 Informa UK Limited, trading as Taylor & Francis Group

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 
https://doi.org/10.1080/10255842.2025.2460178

http://crossmark.crossref.org/dialog/?doi=10.1080/10255842.2025.2460178&domain=pdf&date_stamp=2025-02-13
http://www.tandfonline.com
https://doi.org/10.1080/10255842.2025.2460178


mellitus (Nagpal et al. 2023). AHDHS-Stacking showed 
effectiveness in early diabetes prediction and feature 
screening on the PIMA Indians Diabetes dataset 
(Zhang et al. 2024). The XGBoost model predicted 
insulin adherence in newly initiated users with Type 2 
diabetes mellitus (Chen et al. 2023). Other studies 
focused on predicting diabetic retinopathy, osteopor
osis risk, and gestational diabetes mellitus using various 
ML models such as XGBoost, NGBoost, EBM, LASSO, 
and CatBoost, each showing promising results in terms 
of accuracy and predictive performance (Chan et al. 
2023; Li et al. 2023; Wu et al. 2023; Yagin et al. 2023; 
Zhang et al. 2023; Zhou et al. 2023).

The LR, extra tree classifier, RF, gradient boosting 
decision tree (GBDT), and XGBoost were evaluated 
for predicting the risk of end-stage renal disease in 
newly diagnosed Type 2 diabetes mellitus patients, 
with XGBoost showing the highest Area Under Curve 
(AUC) of 0.953 among the models. The study used 
various sensors, including glucose, electrocardiogram, 
and accelerometer, using the XGBoost algorithm to 
achieve the highest prediction accuracy of 98.2% for 
diabetes, with a 4%–5% increase compared to single 
sensors (Site et al. 2023). While these models show 
promising results, consistently achieving accuracy 
rates above 99% remains challenging due to the com
plex nature of the disease and the many influencing 
factors. Ongoing research aims to refine and enhance 
these ML techniques, emphasizing continuous evalu
ation to ensure their effectiveness in real-world 
healthcare scenarios.

Decision Trees (DT), widely used for classification 
tasks, offer advantages such as computational effi
ciency, interpretability, and simplicity in understand
ing variable relationships for predictions (Parhi and 
Patro 2024). Their ability to provide clear and under
standable decision rules makes them highly interpret
able compared to more complex models like neural 
networks or ensemble methods. This interpretability 
is particularly valuable in fields like healthcare, where 
understanding the reasoning behind predictions is 
crucial (Lu et al. 2023). Additionally, The DT is com
putationally efficient and can handle both numerical 
and categorical data, making them versatile for vari
ous types of datasets (Yaqoob et al. 2023).

Despite their ease of implementation without requir
ing extensive technical expertise, The DT face limita
tions such as over-fitting, challenges with imbalanced 
datasets, susceptibility to noise, and specificity to train
ing data (Talebi et al. 2024), which can potentially lead 
to decreased performance when confronted with 
unseen data and lower accuracy compared to some 

other prediction models (Ul Hassan et al. 2023). 
Various studies have explored strategies to enhance the 
DT performance, mainly through hyperparameter opti
mization. Notable improvements have been observed 
in C4.5, CTree, and CART with hyperparameter 
tuning, addressing limitations and achieving better 
performance (Mantovani et al. 2018). Statistical signifi
cance in the sensitivity of J48 has been demonstrated 
across 102 datasets (Mantovani et al. 2017). The 
Iterative DT efficiently optimizes hyperparameters, 
showcasing competitive and stable performance (Saum 
et al. 2022). Moth-Flame hyperparameter optimization 
has proven effective in identifying failure modes in steel 
plate corrosion (Tran and Kim 2024). Additionally, 
diverse tree-based algorithms, including CTree, C4.5, 
Bagged CART, and RF, have been employed for 
hyperparameter optimization to explore relationships 
between experimental peptide affinities and virtual 
docking data (Feng et al. 2023). Hyperparameter opti
mization using RF for predicting solute transport in 
heterogeneous sandstone has enhanced the accuracy of 
breakthrough curve predictions (Perez et al. 2023). 
Hyperparameter optimization strategies for DT involve 
various optimization algorithms such as GA (Guido 
et al. 2023; Zeinalnezhad and Shishehchi 2024), 
Bayesian Optimization (Kadam and Jadhav 2020; 
Kumar et al. 2022; Albahli 2023), Grid Search (Habib 
and Khursheed 2022; Almutairi 2023), Response 
Surface Method (Moradi et al. 2020), Particle Swarm 
Optimization (Tian et al. 2022), harmony search 
(Zhang et al. 2024), and Firefly Algorithm (Qi and 
Tang 2018). The existing works collectively highlight 
that hyperparameter optimization for DT models is a 
challenging task, requiring diverse optimization algo
rithms to make DT superior in classification tasks.

Mirjalili et al. (2014) introduced the Grey Wolf 
Optimizer (GWO) as a promising algorithm for 
addressing various standard optimization problems by 
mimicking grey wolves’ social hierarchy and hunting 
abilities. GWO has been successfully applied to fea
ture selection in different scenarios (Emary et al. 
2015; Al-Tashi et al. 2020, Almutairi 2023; Alyasseri 
et al. 2022; Thaher et al. 2022; Albahli 2023; Almazini 
et al. 2023; Cinar 2023; Hou et al. 2023; Jain et al. 
2023; Lin et al. 2023; Yuvaraja et al. 2023) and hyper
parameter optimization in Deep Learning, including 
Convolutional Neural Networks (Challapalli and 
Devarakonda 2022; Cuong-Le et al. 2022; Kuyu and 
Ozekmekci 2022; Mohakud and Dash 2022; Priyanka 
and Kumar 2022; Xu et al. 2023). Although the GWO 
algorithm performs well for hyperparameter optimiza
tion, it is limited in exploring the solution space, 
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which is crucial for finding the best solution among a 
wide range of hyperparameters. This limitation can 
hinder the algorithm’s effectiveness in complex opti
mization tasks, as it may struggle to escape local 
optima and fully explore the global search space (Liu 
et al. 2024). Therefore, we propose a Modified GWO 
(MGWO) by adding a Levy distribution function to 
enhance the movements of alpha, beta, and delta 
wolves, thus improving the algorithm’s ability to 
explore the solution space. We chose the Levy distri
bution for its qualities that can help handle complex 
and dynamic search spaces, allowing the algorithm to 
cover a larger area more effectively and increasing the 
likelihood of finding a global optimum. This modifi
cation aims to address the inherent limitations of the 
original GWO and enhance its performance in hyper
parameter optimization tasks (Lei et al. 2023).

The key contributions of this paper are follows:

� To improve the accuracy of diabetes prediction 
through hyperparameter optimization in the DT 
model using GWO and MGWO

� To enhance the algorithms exploration capabilities 
by incorporating levy distribution function in 
improving the steps of alpha, beta and delta wolves

The rest of this paper is organized as follows. Section 
2 describes the methods. The detailed proposed model 
is also discussed in Section 2. Section 3 discusses the 
experimental results and their analysis. Finally, the con
clusion and future scope are outlined in Section 4.

2. Materials and methods

Figure 1 illustrates the workflow of the proposed 
model for predicting diabetes through hyperparameter 
optimization of DT using GWO and MGWO.

2.1. Data source

We accessed publicly available data from The 
Behavioral Risk Factor Surveillance System (BRFSS) for 
2015, which includes 21 feature variables for 253,680 
subjects. From these records, 160,029 respondents were 
diagnosed as normal, 19,681 were diagnosed with pre
diabetes, and 2,812 had been diagnosed with diabetes. 
Most of the variables are related to chronic health con
ditions other than diabetes, such as cancer and asthma. 
Diabetes disrupts glucose regulation, either by insuffi
cient insulin production or ineffective use of insulin, 
leading to complications such as heart disease, vision 
loss, and kidney disease. While there is no cure, lifestyle 

changes like weight loss, healthy eating, and physical 
activity, along with medical treatments, can help man
age the disease. Early diagnosis is important, allowing 
for proactive management and reducing long-term 
complications. The Diabetes Health Indicators Dataset 
from Kaggle (Teboul 2021), derived from the BRFSS 
2015 data, will be utilized. This dataset has 253,680 sur
vey responses that have been cleaned and balanced, 
providing a comprehensive overview of various health 
indicators relevant to diabetes. The characteristics of 
the BRFSS dataset are presented in Table 1.

2.2. Data preprocessing

We used exploratory data analysis (EDA) in the data 
pre-processing. EDA involves calculating the extent of 
missing data, means, variances, medians, quartiles, 
and other relevant statistical measures for each fea
ture. The goal was to thoroughly understand how 
these features are distributed throughout the original 
dataset. As shown in Figure 2, the BRFSS dataset has 
no missing values for any of its attributes. After that, 
we identified outliers in each attribute using the 
Interquartile Range (IQR) value, calculated with the 
formula in Equation (5). Q1 represents the lower 
quartile (25th percentile) and Q3 represents the upper 
quartile (75th percentile).

IQR ¼ Q3 − Q1 (1) 

As shown in Figure 3, there are many outliers in the 
22 continuous attributes within the BRFSS dataset. 
These values might make the information less accurate 
and lower the model’s performance. To tackle this 
problem, we remove the values identified as outliers. 
We do this to reduce the chances of the models strug
gling to achieve accurate results due to statistical errors. 
Because each feature has a different scale, the direct 
adjustment process presents some specific challenges. 
Next, we standardize the values of each feature from 0 
to 1 using the Z-score normalization technique as for
mulated in Equation (6), where l represents the mean 
and r represents the standard deviation.

Z − score ¼
x − l

r
(2) 

2.3. Data splitting: k-fold cross validation

K-Fold validation with k¼ 10 is applied to the BRFSS 
dataset, considering the health status categories 
‘Normal,’ ‘Pre-diabetes,’ and ‘Diabetes.’ The dataset is 
divided into 10 folds, ensuring that each fold maintains 
the same proportion of the three health status categories 
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as in the complete dataset. This approach allows the 
machine learning model to be trained and tested on vari
ous subsets of the data, ensuring that the model’s per
formance is comprehensively and robustly evaluated 
across the entire dataset. By maintaining a balanced dis
tribution of health status categories, the k-fold cross-val
idation process reduces potential bias and provides a 
reliable assessment of the model’s predictive capabilities. 
The visualization of the division between the training set 
and the testing set using k-fold cross-validation is shown 
in Figure 4.

2.4. Synthetic minority over-sampling technique

Imbalanced data can be disruptive when training ML 
models (Ray et al. 2020). SMOTE (Synthetic Minority 

Oversampling Technique) is a popular approach to 
address this data imbalance by adding more samples 
from the minority class. However, when using SMOTE 
to augment samples from the minority class, new sam
ples are generated randomly between two sample 
points and lack control. This can lead to the emergence 
of more unusual or abnormal samples (Liu et al. 2023).

The BRFSS dataset has three classes, and the distri
bution of these classes can be seen in Figure 5. There 
is an imbalance among the classes in this dataset. As 
shown in Figure 5(a), around 87.67% of the data falls 
into the dominant class, namely, normal. Meanwhile, 
the other classes contribute only about 10.78% for 
pre-diabetes and 1.54% for diabetes collectively. The 
problem is the domination of the majority class over 
the minority classes. The created model tends to favor 

Figure 1. The workflow of the proposed model.
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Table 1. Characteristics of key attributes in the diabetes health indicators dataset.
Attribute Description

Diabetes_012 0¼ no diabetes, 1¼ prediabetes, 2¼ diabetes
HighBP High blood pressure (0¼ no, 1¼ yes)
HighChol High cholesterol (0¼ no, 1¼ yes)
CholCheck Cholesterol check in last 5 years (0¼ no, 1¼ yes)
BMI Body Mass Index
Smoker Smoked 100þ cigarettes (0¼ no, 1¼ yes)
Stroke Ever had a stroke (0¼ no, 1¼ yes)
HeartDiseaseorAttack Coronary heart disease or heart attack (0¼ no, 1¼ yes)
PhysActivity Physical activity in last 30 days (0¼ no, 1¼ yes)
Fruits Consume fruit daily (0¼ no, 1¼ yes)
Veggies Consume vegetables daily (0¼ no, 1¼ yes)
HvyAlcoholConsump Heavy alcohol consumption (0¼ no, 1¼ yes)
AnyHealthcare Any healthcare coverage (0¼ no, 1¼ yes)
NoDocbcCost Could not see doctor due to cost (0¼ no, 1¼ yes)
GenHlth General health (1¼ excellent, 5¼ poor)
MentalHlth Days mental health not good (1–30 days)
PhysHlth Days physical health not good (1–30 days)
DiffWalk Difficulty walking/climbing stairs (0¼ no, 1¼ yes)
Sex Gender (0¼ female, 1¼male)
Age Age
Education Education level (1¼ less than HS, 6¼ college grad)
Income Income level (1 ¼ <10, 000, 8 ¼75,000þ)

Figure 2. The statistics of BRFSS dataset.
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the majority class, resulting in less accurate classifica
tion for the minority classes. SMOTE is used to 
address this problem. Applying SMOTE resolves the 
issue of imbalanced distribution, and the classes are 

spread more evenly throughout the dataset, as illus
trated in Figure 5(b). An experimental study was con
ducted to compare and discuss the results before and 
after the implementation of SMOTE.

Figure 3. The BRFSS dataset distribution box plot.

Figure 4. Visualizing k-Fold validation with k¼ 5.

Figure 5. The class distribution of the BRFSS dataset.
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2.5. Basic theory of decision tree

Decision Tree (DT) is a well-known classification 
algorithm used in classification tasks. This algorithm 
employs simple decision rules derived from data fea
tures to build a prediction model. Its key advantages 
lie in its interpretability and its ability to handle both 
numerical and categorical data. In the DT algorithm, 
commonly used objective functions are Gini impurity 
and Entropy. Gini impurity measures the uniformity 
of the target label distribution in the dataset, while 
Entropy measures the uncertainty or disorder in the 
dataset. Both metrics are used to ensure that the 
resulting DT is optimal and can classify data accur
ately and efficiently. The following formulas calculate 
Gini impurity and Entropy:

GINIðDÞ ¼ 1 −
X̊

i¼1
ðpiÞ

2 (3) 

EntropiðDÞ ¼ −
X̊

i¼1
pi log 2pi (4) 

where ˚ is the number of target classes D and pi is 
the proportion of the sample that belongs to a par
ticular class

These hyperparameters play an important role in 
balancing the model’s complexity and preventing 
overfitting, ultimately influencing the DT effectiveness 
in capturing patterns within the data. More details are 
presented in Table 2.

2.6. Grey wolf optimization

In 2014, Mirjalili et al. (2014) created the Grey Wolf 
Optimizer (GWO) algorithm, inspired by how grey 
wolves behave in groups. In the wild, grey wolves 
usually live together in groups of 5 to 12 members. 
They have a clear social order, with the most domin
ant wolves, males and females, being called ‘alpha (a)’ 
and holding the top position. These wolves make 
decisions about food, sleep, hunting, and where the 
group lives. The other wolves follow the lead of the a 

wolves. Additionally, ‘beta (b)’ wolves follow a deci
sions and oversee the lower-ranking wolves. Another 
group, called ‘delta (d)’ wolves, helps a and b hunt 
and find prey.

The GWO algorithm uses these ideas to solve 
problems in computer algorithms more effectively. 
The grey wolves perform several essential tasks within 
their group. They guard their territory, alert other 
wolves to dangers, and care for injured or weak mem
bers. Omega (x) wolves, positioned at the lowest 
level, obey the orders of all other wolves. The success 
of wolf hunting relies heavily on their social hier
archy. The social behavior of grey wolves can be 
mathematically modeled by considering the prey’s 
location as the optimal solution and representing the 
wolves’ positions as solutions in the search space. a 

Wolves are the best solution as they are closest to the 
prey. b and d Wolves are the next best solutions 
according to their positions in the group hierarchy. In 
the search space, omega wolves follow the updates in 
the positions of a; b; and d wolves. Suppose their 
positions in the search space are denoted as Xa; Xb;

Xd; and Xx; respectively. The GWO algorithm main 
steps involve encircling prey, hunting, attacking, and 
searching. Encircling prey is when wolves move 
around the prey during hunting, and this can be 
mathematically modeled using Equations (5)–(8).

D! ¼ C! � Xp
�!
ðtÞ − X!ðtÞj

�
�
� (5) 

X!ðt þ 1Þ ¼ Xp
�!
ðtÞ − C! � D! (6) 

C! ¼ 2 � a! � rand1
���!

− a! (7) 

A! ¼ 2 � rand2
���!

(8) 

where X!ðtÞ and Xp
�!
ðtÞ represent the current iteration’s 

position vectors of the grey wolf and the prey, respect
ively. C! and A! are coefficient vectors, rand1

���!
and rand2

���!

are two random vectors in [0, 1], and a! is a vector 
whose value decreases from 2 to 0 during iterations. The 
prey-hunting process is led by the a wolf, with the par
ticipation of b and d wolves. These three wolves are 

Table 2. List of DT parameters.
Parameter Description Type data

max_depth The maximum depth of the decision tree; [integer, integer]
if None, nodes expand until leaves have samples less than min_samples_split.

min_samples_split The minimum number of samples required to split a node. [integer, integer]
Suppose an integer is the minimum absolute number of samples required to split.
If a float, it represents the fraction of the total number of samples.

min_samples_leaf The minimum number of samples required to be a leaf node. [integer, integer]
Similar to Min Samples Split, it prevents the creation of nodes with
too few samples if an integer is the minimum absolute number of samples required.
If a float, it represents the fraction of the total number of samples.

Criterion The criterion to measure the quality of the split [‘gini’, ‘entropy’, ‘log_loss’]
‘gini’ for Gini impurity and ‘entropy’ for Entropy
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assumed to know the region where the prey might be 
located, assisting in obtaining the three best search 
agents. These agents further help update other wolves’ 
positions, as seen in Equations (9)–(15).

Da
�!
¼ C1
�! Xa
�! − X!

�
�
�

�
�
� (9) 

Db
�!
¼ C2
�! Xb
�! − X!

�
�
�

�
�
� (10) 

Dd
�!
¼ C3
�! Xd
�! − X!

�
�
�

�
�
� (11) 

X1
�!
¼ Xa
�! − A1

�!
� Da
�! (12) 

X2
�!
¼ Xb
�! − A2

�!
� Db
�! (13) 

X3
�!
¼ Xd
�! − A3

�!
� Dd
�! (14) 

X!ðt þ 1Þ ¼
X1
�!
þ X2
�!
þ X3
�!

3
(15) 

The attacking step is like the exploitation step, done 
using the factor ‘ a!’. When the prey stops, the wolves in 
motion initiate an attack on the prey. The value of A! is 
a random number within the range of ½−2r, 2r�; and the 
value of r2 is within the range of ½−1, 1�: The new posi
tion of the search agent can be any position between its 
current location and the prey’s location. Therefore, the 

attacking condition is applicable when A!
�
�
�

�
�
� < 1:

The search for the best solution is modeled after the 
wolves’ searching behavior. Wolves spread out to search 
for prey and come together when they find it. They 

spread out to find better prey if A!
�
�
�

�
�
� > 1 and converge 

towards the prey if A!
�
�
�

�
�
� < 1: The random value C! is 

utilized to prevent local optima and promote explor
ation, introducing randomness from the algorithm’s start 
to finish, enhancing the exploration concept without 
bias.

2.7. Hyperparameter optimization of DT model 
using GWO and modified GWO

This research aims to enhance the GWO algorithm’s 
performance in optimizing DT model hyperparameters. 
The range of hyperparameter values to be optimized has 
been specified based on Table 3. The objective function 
is formulated in Equation (16). paramsi

����!
2 Rk is a 

k-dimensional hyperparameter vector. TXi represents 

some data selected from the respective training data. The 
imax value is used to manage the number of iterations the 
DT requires to optimize the hyperparameters. Selecting 
a higher value for imax will consume more time to opti
mize the model than a smaller value. Therefore, the value 
of imax should be determined by the data conditions used 
so that the GWO optimization process does not incur 
excessive computational costs. The DT hyperparameter 
optimization using the GWO algorithm is explained in 
Algorithm 1.

maxðacc ¼ DecisionTreeClassifierðparamsi
����!, TXiÞÞ, i < imax

(16) 

Algorithm 1: DT Hyperparameter optimization using 
GWO algorithm

1: procedureGWO_DECISION_TREE_OPTIMIZATION 

(Data, maxiter)
2: Initialize a population of grey wolves (Xi (1,2, 

:::; n); a!; A!; C!) randomly.
3: Set a, b, d positions to the initial positions of 

three random wolves.
4: Define md, mss, msl, cr.
5: for each iteration from 1 to maxiter do
6:  Calculate the fitness of each wolf by 

Equation (16).
7:  Update the position of current wolf by 

Equation (15).
8:  for each wolf in the population do
9:   Update a!; A!; C!:
10:   Calculate the fitness of all agents.
11:   Update the position of the current wolf 

by using Equations (12)–(14)
12:   Clamp the wolves’ positions to stay 

within the search range.
13:   Evaluate the fitness of the new position.
14:   if the new position has better fitness 

than the current position then
15:    Update the position.
16:   end if
17:  end for
18: end for
19: Return the best hyperparameters found.
20: end procedure

The shortcomings of the GWO search space for DT 
hyperparameter optimization with a wide range may 
result in ineffective early optimization. Therefore, we 
propose a modified GWO by incorporating the L�evy 
distribution function. The L�evy distribution function is 
a type of probability distribution used in optimization 
algorithms to generate random steps with varying dis
tances. The L�evy flight mechanism enhances the search 

Table 3. Range parameters value of DT.
Parameter Range Symbol

max depth [1,100] md
min samples splith [2,20] mss
min samples leaf [1,10] msl
criterion [0,1] cr

criter mapping ¼ 0: ‘gini’, 0.5: ‘entropy’, 1: ‘log loss’.
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process by allowing for larger, more explorative moves 
early in the optimization process, which helps in escap
ing local optima. As the optimization progresses, the 
step sizes decrease, enabling fine-tuning of the hyper
parameters. This balance between exploration and 
exploitation improves the effectiveness and efficiency 
of the DT hyperparameter optimization. The general 
formula for the L�evy distribution is:

Lðx; l, cÞ ¼
1
pc

exp −
1
2c
ðx − lÞ

2
� �

(17) 

where l is the position parameter (usually the mean 
value), and c is the scale parameter (which controls the 
variance). By integrating the L�evy distribution function 
into a modified GWO, we aim to improve the move
ment of a, b; and d; thereby enhancing the algorithm’s 
ability to explore solution spaces more effectively. The 
DT hyperparameter optimization using a modified 
GWO algorithm is explained in Algorithm 2.

Algorithm 2: DT Hyperparameter optimization using 
modified GWO algorithm
1: procedure MODIFIED_GWO_DECISION_TREE_ 

OPTIMIZATION(Data, maxiter)
2: Initialize a population of grey wolves (Xi (1,2, :::;

n); a!; A!; C!) randomly.
3: Set a, b, d positions to the initial positions of three 

random wolves.
4: Define md, mss, msl, cr.
5: for each iteration from 1 to maxiter do
6:  Calculate the fitness of each wolf by 

Equation (16).
7:  for each wolf in the population do
8:   Update the position of current wolf by 

Equation (15).
9:   Update a!; A!; C! positions using 

Equation (17)
10:   Calculate the fitness of all agents.
11:   Update the position of the current wolf by 

using Equations (12)–(14)
12:   Clamp the wolves’ positions to stay within 

the search range.
13:   Evaluate the fitness of the new position.
14:   if the new position has better fitness than 

the current position then
15:    Update the position.
16:   end if
17:  end for
18: end for
19: Return the best hyperparameters found.
20: end procedure

2.8. Evaluation performance

The performance evaluation of the proposed method 
uses a confusion matrix for a three-class classification 
problem. The confusion matrix includes true positives 
(TP), true negatives (TN), false negatives (FN), and 
false positives (FP). This matrix is employed to calcu
late accuracy, recall, precision, and F1-score, formu
lated as follows.

Accuracy ¼
TP þ TN

TN þ FP þ TP þ FN
Recall ¼

TP
TP þ FN

Precison ¼
TP

TP þ FP
F1 − score ¼ 2�

Precison� Recall
Precisonþ Recall

(18) 

Additionally, we use the ROC AUC (Receiver 
Operating Characteristic - Area Under the Curve) 
metric to evaluate the overall performance of the 
model, providing insight into its ability to distinguish 
between classes.

3. Result and discussion

Decision Tree (DT) is a popular classification model 
due to its computational efficiency, interpretability, and 
ability to intuitively understand variable relationships. 
However, DT often faces overfitting issues that can 
affect classification performance. To overcome this 
problem, we automatically optimize DT hyperpara
meters using the GWO and modified GWO algorithms. 
In both algorithms, we use 5 wolves and run the algo
rithm for 30 iterations. We chose this number of wolves 
to provide a sufficiently large population for adequate 
exploration in the hyperparameter search space. This 
approach allows us to obtain a good representation of 
various possible solutions and increases the chances of 
finding optimal parameters. Additionally, 30 iterations 
give the algorithm enough time to thoroughly explore 
the search space and achieve convergence to a stable 
solution. With this setup, we achieve an optimal bal
ance between exploration and exploitation in hyper
parameter search while ensuring time efficiency in the 
optimization process.

Figure 6 compares the hyperparame valuesand fit
ness scores at each iteration based on the updates of a;
b; and d positions in both GWO and MGWO. From 
Figure 6(a), it can be seen that the max_depth value 
stabilizes at 37 starting from iteration 14 to the end for 
the a position, from iteration 11 to the end for the b 

COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 9



position, and from iteration 4 to the end for the d posi
tion. Conversely, the max_depth value is unstable in 
GWO for all a; b; and d positions. This stability of 
max_depth indicates that MGWO is more effective in 
determining the optimal maximum depth of DT, which 
is important for avoiding overfitting and ensuring the 
model is neither too complex nor too simple.

Figure 6(b) shows that the min_samples_split value 
stabilizes at 20, generated by MGWO starting from 
iteration 2 to the end for the a and b positions, and 
from iteration 3 to the end for the d position. 

Conversely, the min_samples_split value is unstable in 
GWO for all a; b; and d positions. This stability of 
minsamplessplit indicates that MGWO is better at 

Figure 6. The comparison of hyperparameter and fitness values based on the positions of a; b; and d in GWO and MGWO.

Figure 7. The comparison of fitness value in GWO and MGWO with GA.

Table 4. The comparison of best hyperparameter values from 
GWO and MGWO with GA.

Parameter
Optimization algorithm

GWO MGWO GA

max depth 79 37 29
min samples splith 16 20 19
min samples leaf 4 4 4
criterion gini entrophy entrophy
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determining the minimum number of samples required 
to split an internal node, which is important for pre
venting overfitting and ensuring each node split is sig
nificant. Figure 6(c) shows that MGWO also achieves 
stability for the min_samples_leaf value at 4 starting 
from iteration 14 to the end for the a position, and 
from iteration 4 to the end for the b and d positions. 
This stability of min_samples_leaf indicates that 

MGWO is more effective in determining the minimum 
number of samples that must be present in a leaf node, 
which is crucial for reducing noise and avoiding over
fitting. For the criterion parameter, MGWO uses 
‘entropy’ while GWO uses ‘Gini.’ This criterion type is 
generated from the initial iteration to the end for both 
algorithms. Entropy as a criterion is better in some 
cases because it is more sensitive to uncertainty in the 
splits, while Gini is often faster to compute and effect
ive in many practical situations.

The optimal values of all these DT parameters 
align with the fitness values produced by both algo
rithms as shown in Figure 6(d). MGWO achieves a 
fitness value of 0.849, better than GWO’s fitness value 
of 0.837. These results indicate that MGWO is more 
effective in exploring and exploiting the hyperpara
meter search space, resulting in a model that is better 
in terms of generalization and overall performance.

The involvement of the L�evy distribution in 
MGWO can broaden the exploration scope in the 
search space, contributing to the algorithm’s ability to 
find better solutions. Integrating the L�evy distribution 

Table 5. The comparison of evaluations from hyperparameter 
optimization with GWO and MGWO with GA.

Evaluation Original
Optimization algorithm

GWO MGWO GA

Precision
Normal 90 89 90 90
Prediabetes 3 4 4 1
Diabetes 24 29 32 32

Recall
Normal 88 93 94 94
Prediabetes 3 2 1 0
Diabetes 27 22 22 22

f1-Score
Normal 89 91 92 92
Prediabetes 3 3 2 1
Diabetes 25 25 26 26
Accuracy 80 84 85 85

Figure 8. The comparison of confusion matrices between GWO and MGWO with GA.
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has proven effective in enhancing the algorithm’s per
formance, as reflected in the increased success in 
achieving maximum and minimum values for certain 
hyperparameters in MGWO. Therefore, the combin
ation of GWO and the L�evy distribution in MGWO 
presents opportunities to enhance exploration in the 
search space and improve the overall algorithm per
formance in solving complex optimization problems

The fitness comparison of hyperparameter optimiza
tion between GWO and MGWO with GA is presented 
in Figure 7. It can be observed that the fitness values 
generated by GA show a more stable improvement 
from the beginning to the end of iterations compared 
to the fitness values produced by GWO and MGWO. 
This could be attributed to the nature of the GA algo
rithm, which can explore the search space widely and 
diversely, thus providing more consistent solutions 
over time. Although the fitness value from GA is better 
than that from GWO, it is still inferior to MGWO. This 
result comparison indicates that MGWO has an 

advantage in conducting a more efficient and accurate 
search space exploration, leading to better optimal sol
utions than GA for DT hyperparameter optimization.

Table 4 shows the best results from the hyperpara
meter optimization process for the DT model. The 
results indicate that MGWO performs better than 
GWO and GA in hyperparameter optimization, as 

Figure 9. The comparison of ROC between GWO and MGWO with GA.

Table 6. The comparison of evaluations from hyperparameter 
optimization with GWO and MGWO using PIMA Indian 
datasets.

Evaluation
Optimization algorithm

GWO MGWO

Precision
Normal 92 96
Diabetes 96 85

Recall
Normal 98 92
Diabetes 87 82

f1-Score
Normal 95 94
Diabetes 92 88
Accuracy 93 93
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seen from the fitness scores. MGWO can produce 
more stable parameter values compared to GWO and 
GA. A max_depth value that is too large can nega
tively impact accuracy, as trees that are too deep tend 
to overfit. On the other hand, higher min_samples_ 
split and min_samples_leaf values can improve accur
acy by preventing overly small splits and too few 
leaves. The consistent use of the ‘entropy’ criterion 
shows a preference for this method in measuring 
node split impurity during DT construction, as it is 
often more sensitive to uncertainty in splits.

The best hyperparameter values are used to test dia
betes classification using imbalanced testing data. The 
comparison of evaluations from hyperparameter opti
mization with GWO and MGWO against GA is pre
sented in Table 5, the Confusion Matrix is shown in 
Figure 8, and the ROC Curve is provided in Figure 9. 
Based on these evaluation comparisons, hyperparameter 
optimization using GWO and MGWO successfully 

improved DT performance. MGWO outperformed 
GWO in all performance evaluations. MGWO also per
formed better than GA in terms of precision, recall, and 
f1-score for class 1 (Prediabetes), and was comparable to 
GA for precision, recall, and f1-score for class 0 
(Normal) and class 2 (Diabetes). These evaluation com
parison results are also consistent with the Confusion 
Matrix and ROC values produced by each algorithm.

We also applied the proposed algorithm for diabetes 
classification using the Pima Indian Diabetes dataset. 
This dataset was chosen as a benchmark that is fre
quently used by researchers to test new algorithms. 
Table 6 presents a comparison of model performance 
evaluations, while Figure 10 presents the comparison of 
Confusion Matrix and ROC values. The results show 
that GWO outperforms MGWO in all performance eval
uations, Confusion Matrix, and ROC values. The super
iority of GWO can be explained by the small number of 
attributes in the PIMA Indian dataset, which has only 9 

Figure 10. The comparison of confusion matrix with GWO and MGWO using PIMA Indian datasets.
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attributes. With a more limited search space, GWO can 
find optimal solutions more quickly and efficiently com
pared to MGWO, which has a more complex explor
ation mechanism. Additionally, the two classes in this 
dataset make it easier for the algorithm to achieve better 
performance without the need for the in-depth explor
ation performed by MGWO. Next, Table 7 presents a 
comparison of the accuracy of the proposed method 
with existing methods for diabetes classification. The 
comparison results show that the proposed algorithm 
outperforms the existing algorithms.

4. Conclusion

Diabetes is a chronic condition that affects blood sugar 
levels and can damage vital organs in the body. Early 
detection is crucial given the increasing global preva
lence of diabetes and the serious risk of complications 
if not properly managed, making a good prediction 
system necessary. This study utilizes the BRFSS dataset 
with 22 variables and 253,680 records with 3 labels, 
which after pre-processing resulted in 21 variables with 
182,522 records ready for diabetes classification. DT is 
a commonly used model for classification, but its per
formance decreases with large dataset sizes. Therefore, 
we propose DT hyperparameter optimization using the 
GWO algorithm, which, although rarely used, has great 
potential due to its exploration and exploitation capa
bilities. However, GWO has a limited search space, so 
we propose a Modified GWO (MGWO) incorporating 
the L�evy distribution function to enhance the move
ments of alpha, beta, and delta wolves. Additionally, 
we use GA as a comparative optimization algorithm. 
The results show that DT hyperparameter optimization 
using MGWO outperforms GWO and GA in terms of 

fitness values. Evaluation with test data shows that 
MGWO and GA achieve similar and better accuracy 
compared to GWO. The next step is to apply MGWO 
for hyperparameter optimization on other machine 
learning models and optimization problems. The 
potential applications include various fields such as 
image recognition, natural language processing, and 
anomaly detection. Further research is also needed to 
configure the number of wolves to gain detailed 
insights into their influence on hyperparameter opti
mization performance.
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