Arini Rizky, Wahyuningtyas (2022) METODE KOREKSI BIAS QUANTILE MAPPING UNTUK PROYEKSI TEMPERATURE HUMIDITY INDEX DIBAWAH SKENARIO PERUBAHAN IKLIM. Sarjana / Sarjana Terapan (S1/D4) thesis, Universitas Muhammadiyah Semarang.
|
Text
COVER.pdf Download (482kB) | Preview |
|
|
Text
ABSTRAK.pdf Download (453kB) | Preview |
|
|
Text
BAB I.pdf Download (590kB) | Preview |
|
|
Text
BAB II.pdf Download (776kB) | Preview |
|
Text
BAB III.pdf Restricted to Repository staff only Download (547kB) | Request a copy |
||
Text
BAB IV.pdf Restricted to Repository staff only Download (2MB) | Request a copy |
||
|
Text
BAB V.pdf Download (509kB) | Preview |
|
|
Text
DAFTAR PUSTAKA.pdf Download (536kB) | Preview |
|
Text
LAMPIRAN.pdf Restricted to Repository staff only Download (725kB) | Request a copy |
||
Text
FULL TEXT.pdf Restricted to Repository staff only Download (2MB) | Request a copy |
Abstract
ABSTRAK Rizky Wahyuningtyas, Arini. 2022. Metode Koreksi Bias Quantile Mapping untuk Proyeksi Temperature Humidity Index dibawah Skenario Perubahan Iklim. Skripsi, Program Studi Statistika, Universitas Muhammadiyah Semarang. Pembimbing: I. Tiani Wahyu Utami, M.Si., II. Fatkhurokhman Fauzi, S.Si., M.Stat. Pemanasan global diperkirakan akan memicu peluang terjadinya peningkatan cuaca dan iklim ekstrim dalam kurun waktu 100 tahun ke depan. Hal ini dapat berdampak terhadap adanya heat stress, sehingga perlu dilakukan identifikasi tingkat kenyamanan menggunakan metode Temperature Humidity Index (THI). Penelitian ini membutuhkan model yang dapat mensimulasikan iklim dalam memprediksi perubahan iklim masa sebelumnya dan sekarang untuk skenario iklim masa depan dengan data skala besar seperti Earth System Models (ESM). Statistical Downscaling (SD) dilakukan untuk menurunkan data berskala grid besar dengan acuan grid skala kecil. Hasil SD memiliki nilai bias yang besar, sehingga dibutuhkan metode yang berfungsi mengurangi koreksi bias. Pada penelitian ini menggunakan koreksi bias Quantile Mapping (QM) yang menggunakan data temperatur dan relative humidity luaran ESM skenario RCP4.5 terhadap data MERRA-2 sebagai proyeksi pengamatan berskala lokal. Hasil penelitian ini setelah dilakukan SD dan QM mampu mengoreksi bias pada skenario RCP4.5 dengan kesamaan pola MERRA-2. Hal ini dibuktikan dengan Root Mean Square Error Prediction (RMSEP) hasil SD dan QM memiliki nilai terkecil yaitu sebesar 0.862297 dan 6.61574. Dari koreksi bias yang telah dilakukan dapat diperoleh nilai THI di Indonesia pada bulan basah dan bulan kering berkategori setengah tidak nyaman menjadi tidak nyaman. Kata Kunci: Temperature Humidity Index, ESM, Statistical Downscaling, Quantile Mapping. ABSTRACT Rizky Wahyuningtyas, Arini. 2022. Quantile Mapping Bias Correction Method for Projection of Temperature Humidity Index under Climate Change Scenario. Thesis, Statistics Study Program, University of Muhammadiyah Semarang. Supervisor: I. Tiani Wahyu Utami, M.Si., II. Fatkhurokhman Fauzi, S.Si., M.Stat. Global warming is expected to trigger an increase in extreme weather and climate opportunities in the next 100 years. This can has an impact on heat stress, so it is necessary to identify the level of comfort using the Temperature Humidity Index (THI) method. This research requires models can simulate climate in predicting past and present climate change for future climate scenarios with large-scale data such as Earth System Models (ESM). Statistical Downscaling (SD) is performed to reduce large-scale grid data with reference to small-scale grids. SD results has a large bias value, so we need a method that functions to reduce bias correction. In this study, Quantile Mapping (QM) bias correction uses temperature and relative humidity data from the ESM output of the RCP4.5 scenario against MERRA-2 data as a projection of local scale observations. The results of this study after SD and QM were able to correct the bias in the RCP4.5 scenario with the similarity of the MERRA-2 pattern. This is evidenced by the Root Mean Square Error Prediction (RMSEP) results of SD and QM which have the smallest values of 0.862297 and 6.61574. From the bias correction that has been made, it can be seen that the THI value in Indonesia in the wet and dry months is categorized as half uncomfortable to uncomfortable. Keyword: Temperature Humidity Index, ESM, Statistical Downscaling, Quantile
Item Type: | Thesis (Sarjana / Sarjana Terapan (S1/D4) ) |
---|---|
Call Number: | 018/Statistika/IX/2022 |
Subjects: | L Education > Statistics |
Divisions: | Faculty of Agricultural Science and Technology > S1 Statistics |
Depositing User: | perpus unimus |
Date Deposited: | 08 Nov 2022 02:07 |
Last Modified: | 08 Nov 2022 02:07 |
URI: | http://repository.unimus.ac.id/id/eprint/5992 |
Actions (login required)
View Item |